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Abstract
Fashion image retrieval emphasizes accurately perceiving the fine-grained features to meet users’ precise needs. However,
the existing global image-based retrieval methods encounter challenges such as imprecise positioning of attributes, difficulty
in distinguishing visually similar but semantically different attribute values, and struggles in the learning of attribute features
within specific regions and viewpoints. This paper proposes a two-stage hybrid framework called IPAD (Iterative Positioning
and Attribute Diverging) for attribute-aware fashion similarity learning. In the initial stage, we present an iterative positioning
strategy to precisely identify local attribute regions through an iterative attention mechanism with adaptive suppression.
IPAD leverages the strengths of Convolutional Neural Networks and Vision Transformers. Subsequently, we design an
attribute diverging strategy to optimize attribute value aggregation via online clustering using a momentum encoder, thereby
enhancing model stability and representation. During inference, we further present a feature reasoning mechanism to refine
retrieval results through subgraph similarity matrix generation and re-ranking to enhance accuracy and robustness. Extensive
evaluations on three public datasets demonstrate IPAD’s superior performance over state-of-the-art methods in retrieval
accuracy, achieving an average improvement in MAP by +4.22%. The source code is available at https://github.com/h8e9r7/
IPAD.

Keywords Image retrieval · Similarity learning · Iterative positioning · Attribute diverging · Feature reasoning

1 Introduction

The rise of e-commerce and online shopping [1–5] has sig-
nificant advanced image retrieval technology [6–8]. This
progress is driven by consumer’s increasing demand for
searching fashion items with specific details, promoting cru-
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cial research into identifying key visual attributes (such
as patterns, materials, and styles) in images. This research
focuses on learning to represent these attributes across var-
ious image feature regions [9–11]. Since attribute features
can span large or small areas within an image, and there can
be notable variations between different values of the same
attribute, accurately understanding and representing these
features remains a significant challenge.

With the continuous advancement of technology, researc-
hers have increasingly employed advanced computer vision
techniques for attribute-aware image retrieval [12–18]. This
includes leveraging spatial attention and channel attention
mechanisms to locate and identify specific attributes in fash-
ion images [16]. These methods aim to enhance the system’s
understanding of subtle fashion attributes across the entire
image, facilitating consumers in finding desired products by
specifying details. However, the current positioning accuracy
remains insufficient, leading to poor discriminability. For
instance, existing approaches struggle to accurately identify
visually similar yet semantically different attribute values,
such as “half-high” and “ruffled collars”, which posses dis-
tinct semantic nuances despite their spatial resemblance [19].
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Additionally, certain attributes present challenges to feature
learning due to their unique components and viewing angles,
consequently undermining retrieval accuracy. Furthermore,
the absence of effective reasoning mechanisms further ham-
pers the enhancement of retrieval-aware image retrieval [20].

To address these challenges, we propose an innovative
two-stage framework for attribute-aware fashion similarity
learning called Iterative Positioning and Attribute Diverging
(IPAD), which combines Convolutional Neural Networks
(CNNs) [21] andVisionTransformers (ViTs) [22] techniques
for fashion image retrieval. Our approach begins with an
iterative attention module featuring adaptive attention sup-
pression. This module enhances the precision of attribute
positioning through iterative spatial and channel attention
while adaptively suppressing edge-irrelevant attention in spa-
tial attention.

To tackle the consistency issue in real-time updating of
cluster centers [23, 24], we employ a momentum encoder
[25] and design a cluster center loss function. This func-
tion effectively constrain the feature representation of each
instance to remain near the cluster center of its correspond-
ing attribute label, thereby enhancing the model’s ability to
recognize the intrinsic structure of image data and improving
network stability and representation capability.

Moreover, to further improve fine-grained fashion image
retrieval, we propose a feature reasoning mechanism that
generates a subgraph similarity matrix [26] for each query.
During the reference stage, subgraph updates and fea-
ture optimization are performed via gradient descent. This
approach aggregates updates to iteratively improve the over-
all similarity adjacency matrix, effectively overcoming re-
ranking dependence and stability issues caused by direct
learning through the similaritymatrix. Ultimately, this boosts
the model’s accuracy and robustness through feature space
optimization.

The main contributions of this paper are as follows:

• We propose a two-stage hybrid framework (IPAD) for
attribute aware fashion similarity learning. IPAD lever-
ages the strengths of convolutional neural networks
and vision Transformers by adopting an attention-based
iterative positioning strategy and an attribute diverging
strategy based on online clustering using a momentum
encoder. This approach addresses the problems of impre-
cise attribute positioning and semantic discrimination.

• We develop a feature reasoning mechanism for the infer-
ence stage that refines retrieval results through subgraph
similarity matrix generation and re-ranking. This re-
ranking process involves subgraph updates and feature
optimization via gradient descent, enhancing both accu-
racy and robustness.

• Extensive evaluations on the FashionAI [27], DARN
[28], and DeepFashion [29] datasets demonstrate IPAD’s

superior performance over state-of-the-art solutions in
retrieval accuracy. Our approach yields MAP improve-
ments of +4.11%, +7.51%, and +1.05%, respectively,
showcasing significant advantages in fine-grained fash-
ion image retrieval.

2 Related work

2.1 Traditional fashion image retrieval

Traditional fashion retrieval primarily emphasizes the over-
all similarity of fashion images [28, 30–32]. For example,
in the cross-domain retrieval task, Huang et al. [28] pro-
posed a Dual Attribute-aware Ranking Network (DARN) to
solve the cross-domain image retrieval problem, significantly
enhancing retrieval performance through semantic attribute
learning and triplet similarity constraints. Ji et al. [31] uti-
lized the rich label information on e-commerce websites to
assist the attention mechanism in locating clothing in com-
plex scenes, subsequently completing in-shop retrieval based
on the extracted clothing features. Kang et al. [30] intro-
duced the “Complete the Look” task, addressing the gap in
existing research on predicting product image compatibility
by recommending visually compatible products in complex
real-world scene images. In the fashion compatibility task,
Han et al. [32] trained a bidirectional LSTMmodel to sequen-
tially predict the next item in an outfit based on previous
items, leaning the compatibility relationship between them.

In contrast to these studies that primarily focus on whole-
image similarity, fine-grained fashion image retrieval targets
attribute-aware feature similarity, offering a more detailed
and precise approach that global similarity measurements
cannot adequately address.

2.2 Fine-grained fashion image retrieval

Fine-grained fashion image retrieval focuses on the fea-
tures of local regions related to specified fashion attributes,
rather than the features of the entire image [12–18]. Most
methods adopt an end-to-end single-branch network to
extract attribute-aware feature representations [12–16]. Veit
et al. [12] proposed the CSN model, which learns embed-
dings in semantically different sub-spaces by mask selection
and re-weighting relevant dimensions, addressing the issue
that traditional similarity embeddings cannot capture mul-
tiple similarity concepts. Ma et al. [16] introduced the
ASEN model, which first locates attribute-related regions
through Attribute-aware Spatial Attention (ASA) and further
extracts fine-grained features through Attribute-aware Chan-
nel Attention (ACA). Building on ASEN, Wan et al. [13]
enhanced the relationship between attributes by adaptively
fusing the features ofASA andACA.Yan et al. [14] proposed
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HAEN, which hierarchically extracts attribute embeddings
according to the type and relationship of attributes. Following
this, Yan et al. [15] further proposed ISLN, which iteratively
extracts fine-grained features by repeatedly utilizing atten-
tion, presenting a general framework for iterative attention.

Different from the single-branch structure, Dong et al.
[17] proposed a dual-branch network based on ASEN, where
each branch has the same network architecture and extracts
fine-grained features from global and local perspectives,
respectively. Subsequently, Dong et al. [18] designed a
Coarse-to-Fine dual-branch network,where each branch pro-
cesses features at different granularities, demonstrating the
advantage of a dual-branch network. They introduced the
E-InfoNCE loss and utilized attribute-irrelevant background
features to optimize model performance and amplify the dis-
tinguishing capacity of attribute-specific representations.

Unlike previous studies that focus on a dual-branch struc-
ture, we present a two-stage dual-branch network featuring
a distinctive feature representation based on two strategies:
iterative positioning and attribute divergence. Furthermore,
rather than concentrating solely on model architecture, our
approach enhances retrieval efficacy by incorporating a
feature reasoning mechanism to optimize features during
inference.

3 Proposedmethod

We propose IPAD, a two-stage CNNs & ViTs based hybrid
framework for attribute embedding representation, as shown

in Fig. 1. IPAD optimizes feature representations through
twomodules: Iterative Positioning (IP) andAttribute Diverg-
ing (AD). The IP module comprises two branches: IP-SP
(in Space) and IP-SE (in Semantics), both of which extract
attribute-level embeddings from fashion images. The IP-SP
branch employs an iterative attention with adaptive suppres-
sion to accurately localize attribute regions by suppressing
weaker attention activation regions in each iteration. The
IP-SE branch refines attribute feature expressions using an
attribute cross-attention network based on the vision Trans-
former [22], processing local images activated by the IP-SP
branch’s attention.

To enhance attribute-level clustering performance, we
propose the AD module, which computes and forms cluster-
ing centers [33] using a momentum encoder. This promotes
tight clustering of clothing features with the same attribute
values, thereby constraining the network’s clustering space
representation.

During inference, we introduce the Feature Reasoning
(FR) module, trained through supervised learning, to opti-
mize the original similarity matrix and re-rank the image
sequence for improved retrieval accuracy. Further details will
be provided in subsequent sections.

3.1 Iterative positioning strategies in space
and semantics

Consider a set of fashion images {I }, with attributes {a ∈ A}
and attribute value labels {v ∈ Va} associated with a spe-
cific attribute a. Given an image I and a specific attribute a,

Fig. 1 The proposed IPAD framework. It consists of three key modules: (a) Iterative Positioning (IP) module, including two branches (IP-SP and
IP-SE), (b) Attribute Diverging (AD) module, and (c) Feature Reasoning (FR) module
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IPAD needs to learn the feature vector f (I , a) for the spe-
cific attribute. We define the parameters of IPAD as θ , where
the parameters of the IP-SP branch and IP-SE branch of IP
module are represented by θsp and θse, respectively. The d-
dimensional feature vectors learned by the two branches are
denoted as fsp(I , a) ∈ R

d and fse(I , a) ∈ R
d , respectively.

3.1.1 IP-SP: iterative positioning in space

Given an image and its attributes, we first utilize a CNN
backbone, specifically ResNet50 [34], to obtain the features
of the entire image x ∈ R

c×h×w, where c represents the
number of channels, and h × w corresponds to the image
size. Meanwhile, the corresponding attribute a is encoded
through an embedding network into p0 ∈ R

c. We design an
attention iteration network with I ter iterations, where each
iteration produces two types of features: attribute features
pi ∈ R

c and image features xi ∈ R
c×h×w, where i ∈ I ter .

Given the i − 1th iteration process, the network generates
feature representations pi−1 and xi−1.

The main sub-module in IP-SP is the Iterative Attention
(IA). Iterative Spatial Attention (ISA) and Iterative Channel
Attention (ICA) components are used to obtain more pre-
cise feature representations in this sub-module. Specifically,
the ISA component combines pi−1 and xi−1 using spatial
attention [16] to generate the representation of xi for the
next iteration. Then, xi and pi−1 are passed through the ICA
component to obtain the representation of pi for the next
iteration using channel attention [16]. pi and xi are used as
input for the next iteration. By iteratively stacking the ISA
and ICA components, the Adaptive Suppression (AS) com-
ponent learns to gradually extract fine-grained features based
on ISA.

ISA: Iterative Spatial Attention In the i − 1th iteration, due to
the differing modalities between the image xi−1 ∈ R

c×h×w

and the attribute vector pi−1 ∈ R
c, we first project them

into a shared latent space Ps ∈ R
c′×h×w. Subsequently, we

compute the attention weights αi−1
s ∈ R

c′×h×w.

αi−1
s = Ps

(
xi−1

)
· Ps

(
pi−1

)
. (1)

AS: Adaptive Suppression To improve attribute localization
when iterative spatial attention encounters difficulty in fur-
ther shrinking activation regions, we introduce an adaptive
suppression component with an activation threshold. Ini-
tially, in the i − 1th iteration, we aggregate the attention
weights αi−1

s across the channel dimension c′ to produce
an activation map Ai−1 ∈ R

h×w. The intensity at each
position in Ai−1 reflects its discriminative ability, allowing
us to identify the most relevant regions in the space. We

introduce a threshold η and a ratio ζ of the maximum acti-
vation intensity. Thus, during each iteration, the threshold
ηi = ζ · maxh,w

(
Ai

)
automatically adjusts based on Ai .

Consequently, we compute the mask region Mi−1 ∈ R
h×w

generated in the i − 1th iteration.

Mi−1(h, w) = χ(Ai−1(h, w) ≥ ηi−1), (2)

where χ is the indicator function.
Finally, we perform a spatial multiplication of Mi−1 and

αi−1
s using the dot product operation to derive a refined

attention representation αi−1
s′ = Mi−1 · αi−1

s at a reduced
scale. Subsequently,we compute the spatial attentionweights
specific to the attribute by summing αi−1

s′ along the chan-
nel dimension c′, followed by normalization adjustment by
dividing by

√
c′. This normalization step helps to modulate

the channel features and reduce dimensionality. The resul-
tant weights α′i−1

s ∈ R
h×w are then processed through a

Software activation function for normalization across spatial
dimensions. Finally, α′i−1

s is applied to xi−1 via element-
wise multiplication to compute the output xi ∈ R

c×h×w of
the ISA component in the i − 1th iteration.

xi = α′i−1
s · xi−1. (3)

ICA: Iterative Channel Attention In the i − 1th iteration, ICA
takes the output xi from ISA and pi−1, which is mapped
to a c′-dimensional vector Pc

(
pi−1

) ∈ R
c′
through a fully

connected layer followed by a ReLU activation function.
Subsequently, this vector is concatenated with the result of
summing xi along the channel dimension c, and then passed
through two fully connected layers with a reduction rate r for
dimensionality reduction and expansion [35]. The Sigmoid
activation function is applied to obtain the channel attention
weights αi−1

c ∈ R
c. By performing the dot product between

αi−1
c and pi−1, we derive the output pi ∈ R

c of ICA in the
i − 1th iteration. pI ter serves as the feature representation
learned by the IA sub-module.

pi = αi−1
c · pi−1. (4)

Foreground and Background Representation Contrasting
with prior methods that prioritize foreground (attention-
activated) features while disregarding background elements
as irrelevant or noisy,we argue that these background regions,
devoid of the attribute, are crucial negative counterparts
[18] to foreground features, enriching learning via contrast.
Within the ISA component, background spatial attention
weights are derived via 1 − α′i

s (where 1 ∈ R
h×w symbol-

izes the spatial expansion matrix), enabling the extraction of
background features p̃ I ter , parallel to the attribute-specific
pI ter , by applying identical iterative procedures.
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Finally, we employ a multilayer perceptron (MLP) with
layer normalization (LN) and residual connections to obtain
the final outputs fsp(I , a) and f̃sp(I , a) of the IP-SP branch.

fsp(I , a) = LN
(
MLPskip

(
pI ter

))
, (5)

f̃sp(I , a) = LN
(
MLPskip

(
p̃ I ter

))
, (6)

where LN denotes layer normalization [36], and MLPskip
refers to a multilayer perceptron with skip (residual) connec-
tions.

3.1.2 IP-SE: iterative positioning in semantics

Within the IP-SE branch, we design an attribute-specific
representation network based on the ViT architecture to cap-
ture subtle semantic differences in specific regions. This
branch takes an image as input, initially cropped from the
IP-SP branch’s attention activation map and then resized
back to its original size, along with a specific attribute
input. The IP-SE branch conducts a cross-attention oper-
ation between the image’s embeddings and those of the
specified attribute, resulting in the branch’s feature repre-
sentation through a multilayer perceptron. The essence of
our attribute-specific adaptation resides in the attribute-aware
cross-attention mechanism, defined as follows:

li = softmax
(QaKT

√
D

)
V , (7)

where the query Qa is directly derived from the attribute
embedding, enabling a nuanced integration of attribute-
specific insights into the visual representation. To synthesize
the output fse(I , a) of the IP-SE branch, we concatenate and
project the attention heads, followed by layer normalization
and a feed-forward network, as outlined below:

l = FCcross ([l1, l2, . . . , lh]) , (8)

fse(I , a) = l + FFN (LN (l)) , (9)

where FFN is a Feed-forward Network.

3.2 Attribute diverging strategy usingmomentum
encoder

We dynamically update cluster centers using online cluster-
ing with image attribute labels a and value labels v, tightly
clustering instance features around their {a, v} centers. This
approach enhances network stability and representational
efficacy by avoiding the outdated centers issue of offline

clustering, adapting to data shifts in real time [37]. Amomen-
tum encoder updates cluster centers every nb mini-batches,
incorporating both amain network and amomentum-updated
auxiliary network. The auxiliary network’s parameters are
refined using those of the main network with a fixed momen-
tum, ensuring smooth feature updates and consistency [25]
across batches. We develop two sub-modules: Momentum
Encoder (ME) and Cluster Center (CC).

ME: Momentum Encoder A dictionary queue, keyed by
{a, v} labels with feature queues as values, is maintained,
with each queue length set to nq . The ME sum-module
enqueues features based on labels per batch, replacing the
oldest batch with the current one when full, thereby pre-
serving data consistency. The ME for IPAD’s dual branches,
θ̂ = {θ̂sp, θ̂se}, replicates network parameters for both IP-SP
and IP-SE branches, with θ̂sp and θ̂se denoting the respec-
tive ME parameters. Gradient updates for ME are disabled;
instead, parameters are momentum-updated as follows:

θ̂{sp,se} ← μ{sp,se}θ̂{sp,se} + (1 − μ{sp,se})θ{sp,se}, (10)

where μ{sp,se} ∈ [0, 1) are momentum coefficients for IP-
SP and IP-SE branches, with only θsp and θse undergoing
back-propagation updates.

CC:Cluster Center The CC sub-module updates cluster cen-
ters after nb mini-batches using queued features:

C{sp,se}(a, v) = 1

nq

∑
{ f̂{sp,se}|a, v}, (11)

with C{sp,se}(a, v) ∈ R
d representing cluster center features

for each branch.

3.3 Feature reasoningmechanism for re-ranking

In the inference phase, given a query set {query} and a
candidate set {candidate} for attribute a, we generate a simi-
larity matrix [38] from features derived by the original IPAD,
refined by our Feature Reasoning (FR) module through sub-
graph updates and feature vector optimization via gradient
descent [39]. After IPAD generates features and ranks them
based on feature similarity, we focus on the top nr − 1 can-
didate images most similar to the query. We merge a query
image and its corresponding top nr −1 candidate images into
a sequence of length nr . For i ∈ {1, 2, . . . , nr }, f 0i is the ini-
tial feature of the i th image, with its label value being yi . The

initial similarity adjacency matrix is S0 =
[
s0i j

]
i, j∈{1,2,...,nr }

,

obtained by calculating the cosine similarity between each

pair of images: s0i j = 〈 f 0i · f 0j 〉
‖ f 0i ‖‖ f 0j ‖

. The goal is to predict the
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target similarity adjacencymatrix Ŝ = [
1yi=y j

]
i, j∈{1,2,...,nr },

where 1(yi=y j ) is the indicator function for yi = y j . How-
ever, the similarity adjacency matrix depends on the order
of nodes, i.e., the arrangement of rows and columns, making
it challenging to learn and predict directly from the similar-
ity adjacency matrix because different permutations of rows
and columns lead to difficulties and overfitting in the learning
process [40]. To address this issue, we design an architecture
that is invariant to node order, aiming to enable the model to
effectively learn from the similarity adjacency matrix with-
out being limited by the node ordering.

For each node i in S, a subgraph centered on i is cre-
ated, with an associated similarity matrix δi . The nodes
in δi are sorted based on their similarity to the center
node i . Subsequently, we use a simple optimization net-
work o to accept δi as input and update δi , i.e., o(δi ).
After updating each subgraph similarity matrix, we aggre-
gate all updates by summing them at their corresponding
positions in S to update the entire graph, defined as O(S) =[
o(δ1), o(δ2), . . . , o(δnr )

]
. By processing subgraphs cen-

tered on each node and aggregating predictions, this method
circumvents the complexity and permutation issues of learn-
ing from the full adjacency matrix, effectively leveraging
subgraph structure while ensuring node order invariance.
Subsequently, we can iteratively update the similarity adja-

cencymatrix S̃t =
[
s̃ti j

]
i, j∈{1,2,...,nr }

through the FRmodule,

where t represents the t th iteration.

Ŝt := St−1 + O(St−1). (12)

Discovering that direct updates to the similarity adjacency
matrix introduce non-linearity and non-positive semidefi-
niteness [41], compromising its physical significance and
computational stability, we shift to updating features f ti
for the i th image in the t th round. This strategy, updating

St =
[
sti j

]
i, j∈{1,2,...,nr }

indirectly via features using gradi-

ent descent on the Euclidean distance loss [42], denoted as

� f ( f ) := 1
2

∑
i, j

(
s̃ti j − 〈 fi , f j 〉

‖ fi‖‖ f j‖
)2
, addresses these chal-

lenges and targets optimization of an intermediate result Ŝt ,
which is the optimization target.

∀i : f ti = f t−1
i − ρ

∂� f

∂ fi
( f t−1),

∂� f

∂ fi
( f t−1) = −

∑
j

(
s̃ti j − st−1

i j

) ∂st−1
i j

∂ f t−1
i

( f t−1), (13)

where ρ is the step size. Through this approach, the feature
update in each iteration step aims to reduce the discrepancy
between the updated similarity adjacency matrix and the tar-
get similarity adjacency matrix.

3.4 Objectives

3.4.1 Loss functions

Leveraging the IP module of IPAD, we acquire feature rep-
resentations for both the overall image and specific attribute
regions. Drawing from prior work [18], we employ intra- and
inter-branch contrastive losses to boost attribute sensitivity
and feature distinctiveness. To enhance network stability and
representational quality by ensuring feature representations
remain closely clustered, we introduce a cluster center loss.
Additionally, we propose an FR contrastive loss for the infer-
ence phase.

IP-SP Branch and IP-SE Branch Contrastive Loss The IP-
SP and IP-SE branches of IP target identifying key image
attributes, aiming to align images sharing the same attribute
value (e.g., sleeve length) closely in embedding spaces,
while distancing those with differing values, ensuring that,
for instance, images of short and long sleeves are dis-
tinctly separated [43]. Specifically, we construct triplets T =(
Ii , I

+
i , I−

i

∣∣a)nb
i=1 within a mini-batch, where the attribute

value of Ii is the same as I+
i and different from I−

i . They are
all sampled under the same attribute a, and nb is the batch
size. Therefore, the contrastive loss for the IP-SP branch and
IP-SE branch is defined as:

L{sp,se}
T = 1

nb

nb∑
i=1

max(0,m − d( f{sp,se}(Ii , a), f{sp,se}(I+
i , a))

+ d( f{sp,se}(Ii , a), f{sp,se}(I−
i , a))), (14)

where m is the margin constraint, and d(, ) is the cosine
distance function.

IP-SP to IP-SE Contrastive Loss To further improve the
model’s performance in distinguishing foreground and back-
ground features, following the previous work [18], we
consider that for the same image, the foreground is a pos-
itive sample, while the background can be treated as harmful
information and viewed as a negative sample. This approach
enhances the model’s ability to distinguish between fore-
ground and background and improves the model’s ability to
identify attribute-related regions, thereby boosting the per-
formance of the IP-SE branch. The loss function is defined
as:

LE = − 1

nb

nb∑
i=1

log

(
exp

(
fsp (Ii , a) · fse (Ii , a) /τ

) + �

 + � + ε�

)
,

� =
∑

fse
(
I+
j ,a

)
∈ψ

exp
(
fsp (Ii , a) · fse(I

+
j , a)/τ

)
,

� =
∑

f̃sp
(
I j ,a

)∈Negk

exp
(
fsp (Ii , a) · f̃sp

(
I j , a

)
/τ

)
, (15)
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where ψ represents the set of foreground positive samples
with the same attribute value as Ii within the mini-batch,
and Negk represents the set of backgrounds with the same
attribute value as Ii within the mini-batch, serving as the
negative sample set. ε is the scale factor, and a larger value
indicates a stronger penalty on the similarity between the
foreground and background representations of the same
attribute.

Cluster Center Loss We define the loss function LCC , appli-
cable to both IP-SP and IP-SE branches, for an image I
with label {a, v}, comprising the attribute and its value. The
features extracted by the two branches are fsp(I , a) and
fse(I , a), respectively. For attribute a, the cluster center of
positive samples is denoted by C+

{sp,se}(a) = C{sp,se}(a, v),

with the negative sample sets defined as C−
{sp,se}(a) =

{C{sp,se}(a, 0),C{sp,se}(a, 1), . . . ,C{sp,se}(a,Mn)}\{C{sp,se}
(a, v)},
each excluding the positive center and comprising Mn − 1
elements. The loss function, L{sp,se}

CC , is expressed as:

L{sp,se}
CC (I , a|v) = 1

Mn − 1

{C−
{sp,se}(a)}∑

c

max
(
0,m − d

(
f{sp,se}(I , a),C+

{sp,se}(a)
)

+d
(
f{sp,se}(I , a), c

))
.

(16)

FR Contrastive Loss During inference, the FR module
is employed to refine the similarity matrix for improved
retrieval outcomes by re-ranking a query image against the
top nr − 1 candidates from initial similarity assessments.
The objective is to amplify similarity with positive samples
and diminish it with negatives, ensuring positive samples are
ranked higher. Additionally, we introduce the FR contrastive
loss, derived from the InfoNCE [44] loss function, to support
this goal.

LO =
∑

i, j :yi=y j=yquery

− log

⎛
⎝ exp

(
snti j /τ

)

exp
(
snti j /τ

)
+ ∑

k:yk �=yi exp
(
sntik /τ

)

⎞
⎠, (17)

where snti j represents the similarity between the i th sam-

ple image and the j th sample image after the ntht round of
updates.

3.4.2 Training and inference

The target loss during the training process is divided into two
stages. When the queue of ME is fully filled, it transitions

from the first stage to the second stage. The total loss is
defined as:

Lwarm = Lsp
T + λ1Lse

T + λ2LE , (18)

L{sp,se} = L{sp,se}
CC (I , a|v) + L{sp,se}

CC (I+, a|v+)

+L{sp,se}
CC (I−, a|v−), (19)

Ltotal = Lwarm + ξ1Lsp + ξ2Lse, (20)

where λ1, λ2, ξ1, and ξ2 are hyper-parameters. During the
inference stage, we integrate the features from the IP mod-
ule, the IP-SP branch, and the IP-SE branch according to
predefined weights. These features have already been opti-
mized through the AD process.

f = √
β · norm( fsp) + √

1 − β · norm( fse), (21)

where β is the weight hyper-parameter and norm() is the
normalization.

For inference, we use the FR contrastive loss LO directly.

4 Experiments

4.1 Experimental settings

4.1.1 Datasets

Three datasetswere utilized to evaluate themodel: FashionAI
[27], DARN [28], andDeepFashion [29]. These datasets con-
tain 180K, 254K, and 289K images respectively. Each dataset
was split into training, validation, and test sets with a ratio of
8:1:1.We randomly selected a small number of samples from
the training set for re-ranking training. During the training,
100K tripletswere constructed by randomly selecting images
for positive and negative samples. Data augmentation [45]
was applied to the anchor samples. For testing, the images
were divided into query and candidate images at a 1:4 ratio.

4.1.2 Metrics

Mean Average Precision (MAP) is used as evaluation metric,
widely recognized in retrieval tasks [16], and reported as
percentages (%).

4.1.3 Implementation details

The ResNet50 pretrained on ImageNet [46] serves as the
backbone for the IP-SP branch, while the ViT-B/16 is used
for the IP-SE branch. A two-stage training strategy was
employed. Hardware-wise,model training utilized 32 RTX
3090GPUs.Empirically,we set ζ = 0.95 to control the atten-
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Table 1 Performance comparison on the FashionAI dataset

Method MAP for each attribute MAP
Skirt
length

Sleeve
length

Coat
length

Pant
length

Collar
design

Lapel
design

Neckline
design

Neck
design

Baseline 17.20 12.50 13.35 17.45 22.36 21.63 11.09 21.19 15.79

Triplet 48.38 28.14 29.82 54.56 62.58 38.31 26.64 40.02 38.52

CSN [12] 61.97 45.06 47.30 62.85 69.83 54.14 46.56 54.47 53.52

ASEN [16] 64.44 54.63 51.27 63.53 70.79 65.36 59.5 58.67 61.02

HAEN [14] 64.13 55.52 56.41 72.31 73.32 69.22 62.41 59.80 64.13

AttnFashion [13] 65.70 56.46 54.64 71.12 74.45 69.36 65.69 65.54 65.37

ISLN [15] 65.91 58.83 56.45 71.22 74.53 70.55 65.71 65.61 66.10

ASEN++ [17] 66.34 57.53 55.51 68.77 72.94 66.65 66.81 67.01 64.31

RPF [18] 66.75 67.86 59.65 73.23 75.72 73.18 74.40 75.01 70.11

IPAD 68.93 68.32 64.85 76.88 79.37 79.96 79.44 75.66 73.69

IPAD+FR 69.17 70.25 65.99 77.29 80.04 79.69 79.47 75.71 74.22

The bold entries represent the best results in each column, indicating statistical significance

tion decay in the adaptive suppression module. The number
of iterations for the IA sub-module was fixed at I ter = 3.

For the ME sub-module, momentum update coefficients
were set to μsp = μse = 0.995, the queue length nq =
1000, and the CC sub-module was updated every nb = 50
iterations. In the FR module, the total sequence length was
set to nr = 500. During training, the margin value m was
set to 0.2 [47], temperature factor τ = 0.07, and penalty
coefficient ε = 12.

For λ1, λ2, ξ1, and ξ2, values were set to 0.1, 0.04, 1.0, and
1.0, respectively, based on prior experience to ensure initial
loss values for each component were relatively balanced.

4.2 Performance comparison

We evaluated our method against previous state-of-the-art
methods on three datasets. Table 1 compares the performance

on the FashionAI dataset. The competing methods including
traditionalmethods (a random ranking baseline and the triplet
network), single-branch models (CSN [12], ASEN [16],
HAEN [14], AttnFashion [13], ISLN [15]), and dual-branch
models (ASEN++ [17] and RPF [18]). Our IPAD method
demonstrated superior performance, achieving an overall
MAP of 73.69. Integrating the proposed FR mechanism fur-
ther enhanced the performance to 74.22. Additionally, IPAD
significantly outperformed the previous best model, RPF,
on multiple specific attributes, such as lapel design, where
IPAD’s MAP surpassed RPF by 6.78%. These results high-
light the effectiveness of our two-branch iterative solution
and the re-ranking method.

We also evaluated IPAD on the DARN and DeepFash-
ion datasets as shown in Tables 2 and 3. IPAD consistently
outperformed all competing methods on every attribute, con-
solidating its leading position across multiple datasets and

Table 2 Performance comparison on the DARN dataset

Method MAP for each attribute MAP
Category Button Color Length Pattern Shape Collar shape Sleeve length Sleeve shape

Baseline 8.49 24.45 12.54 29.90 43.26 39.76 15.22 63.03 55.54 32.26

Triplet 23.59 38.07 16.83 39.77 49.56 47.00 23.43 68.49 56.48 40.14

CSN [12] 34.10 44.32 47.38 53.68 54.09 56.32 31.82 78.05 58.76 50.86

ASEN [16] 28.81 42.17 47.78 48.55 48.95 47.09 25.67 78.46 56.25 47.08

HAEN [14] 32.10 47.04 45.03 48.27 49.92 51.22 28.05 78.29 58.47 48.70

AttnFashion [13] 34.94 48.56 48.14 54.47 52.65 56.36 32.32 82.63 60.77 52.32

ISLN [15] 38.84 51.26 52.67 56.55 53.85 58.34 36.64 82.74 61.28 54.68

ASEN++ [17] 40.15 50.42 53.78 60.38 57.39 59.88 37.65 83.91 60.70 55.94

RPF [18] 45.18 54.92 55.08 63.51 57.04 63.54 41.20 86.95 62.43 58.80

IPAD 55.58 64.34 55.72 69.40 64.53 72.10 50.30 91.06 69.78 65.78

IPAD+FR 56.18 64.68 56.01 70.53 64.50 72.34 50.66 91.55 69.98 66.31

The bold entries represent the best results in each column, indicating statistical significance
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Table 3 Performance comparison on the DeepFashion dataset

Method MAP for each attribute MAP
Texture Fabric Shape Part Style

Baseline 6.69 2.69 3.23 2.55 1.97 3.38

Triplet 13.26 6.28 9.49 4.43 3.33 7.36

CSN [12] 14.09 6.39 11.07 5.13 3.49 8.01

ASEN [16] 15.01 7.32 13.32 6.27 3.85 9.14

AttnFashion [13] 12.90 6.34 11.38 5.24 4.20 8.01

ASEN++ [17] 15.60 7.67 14.31 6.60 4.07 9.64

RPF [18] 15.62 8.30 15.02 7.38 4.77 10.22

IPAD 15.67 8.57 16.11 8.77 6.31 11.18

IPAD+FR 15.88 8.53 16.46 8.76 6.73 11.27

The bold entries represent the best results in each column, indicating
statistical significance

verifying the universality and effectiveness of our approach.
It is worth noting that some baseline methods did not provide
results on the DeepFashion dataset.

4.3 Ablation studies

Ablation studies on the FashionAI dataset evaluated IPAD’s
modules and components.

4.3.1 Impact of IP-SP and IP-SE branches

We compared three variants to evaluate the impact of the IP
module. Here, the AD module is not considered.

• w/o SE: Only the IP-SP branch in the IP module is kept.
• w/o SP: Only the IP-SE branch in the IP module is kept.
• w/ IP: The entire IP module is kept.

As shown in Fig. 2, the comparison between the IP-SP
and IP-SE branches of the IP module in FashionAI reveals
that w/ IP achieves a notably MAP of 73.17%, outperform-
ing the individual branches which achieve 68.47% (w/o SE)
and 70.45% (w/o SP). This superiority is particularly evident
in attributes with diverse visual characteristics such as pant
length and collar design, underscoring the effectiveness of
integrating spatial and semantic insights.

Additionally, the IP-SE branch demonstrates an advan-
tage in collar design and neckline design, emphasizing
the significance of semantic features in handling complex
attributes. These findings strongly advocate for a compre-
hensive approach to clothing features extraction through the
fusion of IP-SP and IP-SE, validating the importance of
integrating multiple sources of information for sophisticated
visual recognition tasks.

4.3.2 Impact of the components in IP-SP

We investigated the IP-SP branch of the IP module for
fine-grained image retrieval, focusing on the three compo-
nents in the IA sub-module. The AS component aims to
enhance recognition accuracy by iteratively emphasizing
spatial aspects and optimizing attention distribution. Here,
the AD module and the IP-SE branch are not considered.

• w/o ISA: Only the ICA component in the IA sub-module
is kept.

• w/o ICA: Only the ISA and AS components in the IA
sub-module are kept.

• w/o AS: Only the ISA and ICA components in the IA
sub-module are kept.

Fig. 2 An ablation study
examining the IP-SP and IP-SE
branches of the IP module. It
shows that IPAD excels in
recognizing complex attributes,
surpassing the individual IP-SP
and IP-SE branches
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• w/ IA: The entire ISA, ICA, and AS components in the
IA sub-module are kept.

The results revealed that ICA and ISA significantly
enhance model performance, as shown in Fig. 3. With ICA
alone, themodel achieved anMAPof 60.46%.This improved
to 63.98%with ISA, highlighting ISA’s capability in enhanc-
ing spatial feature detection. Utilizing both ICA and ISA
without AS yielded an MAP of 67.42%, underlining their
synergistic effect. The integration of AS with ISA and ICA
further elevated theMAP to 67.9%, highlighting AS’s role in
refining attention by reducing focus on less relevant features.
This improvement is particularly evident in the recognition
of complex fashion attributes like collar design and sleeve
length. These results underscore the critical contribution of
ISA, ICA, and AS in advancing fashion attribute recognition
and provide insights for enhancing similar models.

4.3.3 Impact of the ME sub-module in AD

We compared three variants to evaluate the impact of theME
sub-module in the AD module.

• w/o ME: The ME sub-module is removed from the AD
module.

• w/o ME-SP: Only the ME-SP component is removed
from the ME sub-module.

• w/o ME-SE: Only the ME-SE component is removed
from the ME sub-module.

The results, as shown in Fig. 4, yield insightful con-
clusions. The integration of the ME sub-module notably

enhances the model’s MAP scores, particularly when fully
utilized, demonstrating its capability to improve attribute
recognition accuracy. Optimal performance is achieved with
ME activated in both the ME-SP and ME-SE components,
resulting in a MAP of 73.69%, a 1.63 percentage point
increase over configurations without ME. This suggests a
synergistic effect of ME.

The impact ofME varies across attributes, with significant
improvements observed in detailed-feature attributes such as
collar and neckline designs. A comparison between configu-
rationswithoutME in theME-SP versusME-SE components
indicates that the ME-SE branch, in particular, benefits more
from ME for certain attributes, highlighting the encoder’s
differential contribution.

These findings underscore the importance of the momen-
tum encoder in IPAD for enhancing attribute recognition.
They suggest that ME’s full potential is realized when
employed across both components to efficiently integrate
global and local information. Furthermore, the attribute-
specific responses to ME highlight the necessity for tailored
strategies to maximize performance improvements.

4.3.4 Hyper-parameter analysis

As shown in Fig. 5, we varied the parameter I ter in the iter-
ative attention module from 1 to 10 in intervals of 1. The
performance of the IA sub-module reaches its peak when
I ter is set to 3. These results indicate that multiple iterations
of attention are beneficial for improving the performance of
IPAD, although the effectiveness slightly diminishes after
more than 3 iterations. Therefore, it is recommended to care-
fully consider the number of attention iterations.

Fig. 3 An ablation study
examining the three components
in the IA sub-module. It shows
that ISA, ICA, and AS each
individually improve fashion
attribute recognition accuracy
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Fig. 4 An ablation study
examining the momentum
encoder. It shows that the ME
enhances MAP, especially when
utilizing both IP-SP and IP-SE
components

Additionally, the influence of β in (21) is illustrated in
Fig. 6. We adjusted the value of β from 0 to 1 in intervals
of 0.1, and the performance of IPAD is optimal when β is
0.4. The finding suggests that IPAD tends to leverage the
capabilities of IP-SE more effectively at this value.

4.4 Visualization analysis

4.4.1 Effect of iterative learning

To investigate IPAD’s attribute localization capabilities, we
performed a visualization analysis of the attribute activation

regions [48], as shown in Fig. 7. The iterative attention
sub-module demonstrates its dynamic nature: Initial atten-
tion distributions are dispersed, covering various potential
attribute regions; As iterations progress, the focus sharpens
on specific, relevant areas, illustrating the model’s ability to
refine attribute localization through iterative learning. For
instance, in recognizing sleeve length, attention shifts from a
broad focus on the upper body to precise areas such as cuffs
and sleeves. Similarly, for collar design recognition, attention
becomes finely tuned to collar shapes and details.

By binarizing the final iteration’s attention weights, we
created distinct attribute activation region masks, clearly

Fig. 5 The influence of
hyper-parameter I ter
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Fig. 6 The influence of
hyper-parameter β

Fig. 7 Visualization of attribute
activation regions through
iterative learning. The initial
attention distributions are
dispersed, but as iterations
progress, the focus sharpens on
relevant areas

Fig. 8 Visualization of retrieval
results before and after
re-ranking. It illustrates the
improvement in retrieval
accuracy with the FR module,
which prioritizes images with
correct attributes
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defining the areas considered most relevant by the model.
Cropping these regions from the original images yields
patches rich in attribute-specific information, highlighting
the model’s discriminative precision. These visualizations
not only affirm the IPADmodel’s proficiency in progressively
concentrating attention to enhance attribute recognition but
also its capability in deciphering complex fashion details.
They offer a clear, intuitive insight into the model’s opera-
tional mechanics.

4.4.2 Effect of re-ranking

Figure 8 presents an example of retrieval results before and
after re-ranking, visually illustrating the effectiveness of the
FR module. It is observed that through re-ranking, more
images with correct attributes are placed at the front of the
sequence, leading to an improvement in MAP. However, the
FR module can occasionally cause re-ranking failures when
the images are influenced by irrelevant information, such as
background elements.

4.5 Complexity analysis

This section presents a detailed complexity analysis of the
proposed IPAD model, encompassing both model size and
computational overhead during inference. We evaluate the
model’s trainable parameters and the required floating-point
operations (FLOPs) for encoding a single image. The IPAD
model contains approximately 142Mparameters and requires
3.44G FLOPs. Additionally, the extraction of attribute-
specific features for a single image takes an average of 11ms,
achieving real-time response capability for system imple-
mentation. These benchmarks were obtained using a system
equipped with 64GB of memory and a single NVIDIA RTX
3090 GPU.

5 Conclusion

This paper introduces the IPAD framework, which integrates
iterative positioning strategy, attribute diverging strategy,
and feature reasoning mechanism to significantly enhance
the precision and robustness of fine-grained fashion image
retrieval. By leveraging innovative iterative attention and
online clustering methods, we effectively address challenges
related to inaccurate attribute localization and semantic dif-
ferentiation. Experimental evaluations on diverse datasets,
including FashionAI, DARN, and DeepFashion, validate
IPAD’s effectiveness, showcasing substantial improvements
in attribute recognition and image retrieval accuracy.

This research contributes novel techniques and insights
to the filed of fine-grained fashion image retrieval. Future

work will focus on enhancing the model’s generalization and
real-time performance, as well as optimizing similarity com-
putation to achieve a more accurate and efficient retrieval
system.
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