
Mobility-Aware Edge Service Scheduling
with Request Heterogeneity and Server Load

Balancing

Guobing Zou1, Yile Wang1, Song Yang1, Shengye Pang1(B), Yanglan Gan2(B),
and Bofeng Zhang3

1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
{gbzou,22721500,yangsong,pangsy}@shu.edu.cn

2 School of Computer Science and Technology, Donghua University, Shanghai 201620, China
ylgan@dhu.edu.cn

3 School of Computer and Information Engineering, Shanghai Polytechnic University,
Shanghai 201209, China

Abstract. The service request scheduling problem in Mobile Edge Computing
(MEC) often overlooks user mobility, request heterogeneity, and server load dis-
tributions, resulting in increased latency and energy consumption. To address
these challenges, we introduce the Mobility-Aware Edge Service Scheduling with
Request Heterogeneity and Server Load Balancing (MESS-HL) problem, consid-
ering user mobility, data volume changes of service requests, and load balancing.
By proving and solving the NP-hard MESS-HL problem, we propose a novel
heuristic simulated annealing algorithm, MHLSA. It integrates user mobility tra-
jectories, heterogeneous requests, and server load status as heuristic information
into both initialization and perturbation to find an approximately optimum solu-
tion. Comprehensive experiments on two real-world datasets show that MHLSA
achieves an average improvement of 31.2% in response time, 62.2% in energy
consumption, and 48.9% in load balancing over existing methods.

Keywords: Mobile Edge Computing · Edge Service Scheduling · User
Mobility · Request Heterogeneity · Server Load Balancing

1 Introduction

With the rapid development of 5G and Artificial Intelligence, the demand for com-
putationally intensive and low-latency sensitive applications, such as real-time video
analysis, autonomous driving, and virtual/augmented reality, has significantly increased
[1]. Traditional cloud computing, relying on distant centralized data centers, often suffers
from high latency and inefficiency [2]. Mobile Edge Computing (MEC) has emerged
as a promising extension of cloud computing, which addresses this issue by deploy-
ing resources closer to end users, significantly reducing response time [3]. Despite its
advantages, MEC faces critical challenges. First, resource constraints limit the comput-
ing capabilities of edge servers compared to cloud data centers [4]. Second, coverage
limitations restrict user-server interactions within specific geographical areas [5].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
D.-S. Huang et al. (Eds.): ICIC 2025, CCIS 2575, pp. 485–496, 2025.
https://doi.org/10.1007/978-981-95-0017-8_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-95-0017-8_40&domain=pdf
https://doi.org/10.1007/978-981-95-0017-8\sb {40}

486 G. Zou et al.

Although service scheduling in MEC has been extensively studied, existing
approaches suffer from three major limitations. First, user mobility is often overlooked,
most approaches assume static user locations at request time, ignoring mobility during
execution. If the user moves out of the executing server’s coverage area, it will lead to
extra delays and resources to respond with the result. Second, request heterogeneity is
ignored, upstream and downstream data volumes can differ significantly across edge
services. Failing to account for this leads to inefficient scheduling and increased latency.
Third, load balancing is often under-addressed, many approaches pursue high resource
utilization but neglect load distribution, causing some servers to be overloaded while
others remain underutilized, which may degrade edge system’s responsiveness.

To tackle these challenges, we formulate the Mobility-Aware Edge Service
Scheduling with Request Heterogeneity and Server Load Balancing (MESS-HL) prob-
lem, which explicitly incorporates user mobility, request heterogeneity of edge ser-
vices, and server load balancing into consideration. Based on the transformation from
a MESS-HL problem to a multi-objective optimization problem, we prove its NP-
hardness and propose a heuristic approach based on Simulated Annealing (SA) to find
an approximately optimum scheduling solution, which is called Mobility, Heterogeneous
Requests and Load Balancing-aware SA (MHLSA), which enhances the performance
of scheduling edge services for better satisfying users’ diverse service demands.

In summary, our main contributions are listed as follows:

• We formulate a novel edge service scheduling problem called MESS-HL by consid-
ering three key factors for better reflecting the situations in real applications. Also,
we model it as a multi-objective optimization problem that is proven to be NP-hard.

• We propose an improved simulated annealing algorithm named MHLSA to solve the
NP-hard MESS- HL problem, which enhances the standard SA by incorporating
user mobility, heterogeneous requests of edge services, and edge server load status
as heuristic information into initialization and perturbation operations.

• Our proposed method MHLSA outperforms existing approaches across all metrics
in two real-world datasets. Experimental results demonstrate the superiority and
generality of MHLSA for handling edge service scheduling.

2 Related Work

In recent years, edge service scheduling in MEC has garnered significant attentions.
Minimizing latency is a fundamental objective in edge service scheduling. Cang et al.
[6] tackled the issue of asynchronous service request arrivals in MEC by employing the
Benders decomposition method, effectively improving scheduling efficiency through
problem decomposition. Lou et al. [7] proposed the DCDS method to optimize dependent
task scheduling under stringent deadlines, integrating long-term impact assessments of
immediate scheduling decisions. However, these studies largely overlook the impact of
user mobility, as users move across the coverage areas of different edge servers, response
results are transferred among multiple servers, introducing additional delays.

Given the resource constraints of edge servers, resource consumption optimization
is important in edge service scheduling. Ma et al. [8] introduced WiDaS, a dynamic
scheduling algorithm that optimizes response time within a fixed resource budget. Jiang

Mobility-Aware Edge Service Scheduling with Request Heterogeneity 487

et al. [9] applied a multi-task resource scheduling approach based on reinforcement
learning, targeting energy minimization. However, these approaches have not considered
the request heterogeneity, which may trigger additional costs like bandwidth.

Maintaining workload distribution is crucial to preventing performance degradation
of edge servers. While many studies focus on maximizing resource utilization, which
can lead to partial servers being overburdened while others remain underutilized [10].
Though some studies acknowledge this issue, their approaches have limitations. Dong
et al. [11] proposed a Lyapunov-based online matching algorithm to balance system
utility and workload distribution, yet it overlooked the heterogeneity of requests.

3 Problem Formulation

Given a set of m edge severs ES = {es1, es2, ..., esm} and n edge users U =
{u1, u2, ..., un} in a particular area, each user submits one edge service defined below.

Definition 1 (Edge Service). Given an edge user u, u’s edge service s encompasses a
specific type of request r ∈ {UGD, ULD, UED}.

We classify request types based on edge service (ES) and its corresponding response
result (RR) data volume changes: (1) UGD Request, like image analysis, where
large input image data generates compact textual results; (2) ULD Request, like
search engines, where lightweight queries return rich multimedia content; and (3)
UED Request, where input and output sizes are approximately balanced, like file
synchronization.

Definition 2 (Coverage Constraint). To determine whether a user ui can interact with
the edge server esj at time t, the distance dij between them at the moment should be no
more than esj’s coverage radius Resj , which is depicted as d

t
i,j ≤ R

(
esj

)
.

Definition 3 (Resources Constraint). Assuming that there have been a set of edge
services D(esi) = {s1 esi , s2 esi , . . . } on esi, if esi wants to start executing the edge service
sj, it must satisfy the conditions in Eq. (1):

Cj +
∑

sk esi∈Desj

Ck ≤ Ces

Mj +
∑

sk esi∈Desj

Mk ≤ Mesi

(1)

where Cj and Mj are the computational and memory resources required by request sj.
Cesi and Mesi refer to the total computational and memory resources of edge server esi.

Definition 4 (Mobility Trajectory). The user’s mobility trajectories Mu is the sequence
of all positions during the interaction between the user and the edge system.

In our experiments, we assume that all approaches can obtain users’ mobility tra-
jectories at any time. To reflect real-world scenarios, in Sect. 5.4, we conduct a detailed

488 G. Zou et al.

discussion about the impact of prediction deviations on our approach, using a simulation
approach inspired by the methodology presented in [12], as shown below:

Merr = F(
P, δx, δy

)
(2)

where P denotes the probability of accurate trajectory prediction, δx and δy represent the
position offsets in the x and y directions, which both follow a Gaussian distribution.

Definition 5 (Response Time). The response time T consists of three components:

T = texe + twait + ttr (3)

where texe is the execution time required by the server. If a server lacks sufficient
resources when the ES arrives, the request must wait before execution, denoted as twait .
The mobility of users may lead to transfer delay ttr . It is described separately as below.

Definition 6 (Transfer Delay). Transfer delay includes the upload of the ES and the
return of the RR, which depends on hop counts between servers and affected by a
bandwidth factor φ reflecting real-world network fluctuations, as shown below:

ttr = ttr up + ttr down
ttr up = Trtime up · hopu,e · φup

ttr down = Trtime down · hope,d · φdown

(4)

where Trtime indicates the ideal time for an ES and its RR to transfer between edge
servers over a single hop. The bandwidth factor φ is defined in Eq. (5):

φup = f
(

du,e
hopu,e

)

φdown = f
(

de,d
hope,d

)

f (x) = 1 + ε
1+ex

(5)

where d is the Euclidean distance between two servers. ε is sampled from (−0.1,0.1).

Definition 7 (Communication Cost). We define the total resources consumed by the
transfer of an edge service and its corresponding response result among multiple edge
servers as the Communication Cost (CC), which is expressed in Eq. (6):

CCtr = CCtr
up + CCtr

down
CCtr

up = Trbd up · hopu,e · φup

CCtr
down = Trbd down · hope,d · φdown

(6)

where CCtr
up and CC

tr
down represent the resources consumed by the transfer of the ES

before execution and the RR after execution, respectively. Trbd is the ideal resource
consumption required to transfer the ES or the RR between edge servers in one hop.

Mobility-Aware Edge Service Scheduling with Request Heterogeneity 489

Definition 8 (Server Load Status). The load status of an es is defined in Eq. (7):

esload = esexe load + θ · eswait load
esexe load = Cexe

C + Mexe
M

eswait load = Cwait
C + Mwait

M

(7)

where esexe load and es
wait
load represent the load of requests on es executing and waiting,

respectively. Under the same conditions, we aim to keep the backlogs on the es as
minimal as possible. Therefore, we multiply eswait load by a coefficient θ greater than 1.

Definition 9 (MESS-HL Problem). The MESS-HL problem can be defined as a five
tuple MESS-HL = 〈U, ES, S, M, L〉, where U is a set of users, ES is a set of edge servers,
S is a set of edge services submitted by edge users, M is the trajectories corresponding
to each user u, L denotes the load status corresponding to each edge server es.

4 Approach

4.1 MESS-HL Problem Optimization Modeling

We evaluate the scheduling performance using three key metrics: average response time
(ART), total communication cost (TCC), and load balancing (LB). Specifically, ART is
the mean latency experienced by users and is computed as ART = 1

|U|
∑

T , where T
is the response time for each service request based on Eq. (3). TCC quantifies the total
communication overhead and is defined based on Eq. (6) as TCC = ∑

CCtr , with CCtr

representing the per-request transfer cost. LB assesses load balancing of the edge system
and is calculated as the variance of esload in Eq. (7).

Given a MESS-HL problem, we use the weighted sum method to convert the original
multi-objective optimization problem into a single-objective optimization problem:

min(α · ART + β · TCC + γ · LB) (8)

s.t.

0 < α, β, γ < 1 (9)

∑|ES|
j=1

xi,j = 1, ∀i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., m} (10)

dt
i,jy

t
i,j ≤ R

(
esj

)
, ∀i ∈ {1, 2, ..., n}, j ∈ {1, 2 , ..., m} (11)

where xi,j and yt i,j are binary variables indicating that:

xij =
{
1, if si is executed on esj
0, otherwise

(12)

490 G. Zou et al.

yi,j =
{
1, if ui can interact with esj at time t
0, otherwise

(13)

In the objective function (8), we aim to minimize the average response time and total
communication costs of all edge services while considering edge system load balancing.
Equation (10) imposes the constraint that each edge service must be executed and can
only be executed by a single edge server. Equation (11) imposes the constraint that a
user can only interact with edge servers which cover him.

4.2 NP-Hardness Proving of MESS-HL Problem

Definition 10 (CFLP). The CFLP can be formulated as follows:

min
∑

i∈F
hiyi +

∑

i∈F

∑

j∈D
Costi,jxi,j (14)

s.t.
∑

i∈F xi,j = 1, ∀j ∈ D (15)

∑

j∈D djxi,j ≤ ciyi, ∀i ∈ F (16)

xi,j, yi ∈ {0, 1}, ∀i ∈ F, ∀j ∈ D (17)

where yi denotes whether facility i is open, xi,j indicates whether demand dj is fulfilled by
facility i, and Costi,j represents the cost of serving demand j from facility i. Furthermore,
ci corresponds to the capacity of facility i.

Theorem 1. The MESS-HL problem is NP-hard.

Proof. We make the following assumptions to construct a simplified MESS-HL:

• We focus solely on latency and ignore other two parts in Eq. (8).
• There is only one type of resource, C in the problem.
• The total available resources across all edge servers exceed the total resource demand

of all submitted edge services from users.
• Each edge service begins execution immediately upon arrival.
• All users are stationary during their interaction with the edge environment.

With these assumptions, we can obtain a response time matrix
[
R〉,|

]

n,m
, where n

and m represent the number of edge services and edge servers, respectively. Let the
resources of all edge servers form the set C. As there is no cost to run an edge server
in the MESS-HL Problem, the first part of the CFLP objective,

∑
i∈F hiyi in Eq. (14)

can be neglected. Under these conditions, the objective in Eq. (14) can be mapped to
the objective in Eq. (8), the constraint in Eq. (15) can be mapped to the constraint in
Eq. (10), the constraint in Eq. (16) can be mapped to the constraint in Eq. (11), and

Mobility-Aware Edge Service Scheduling with Request Heterogeneity 491

the constraint in Eq. (17) can be mapped to the constraints in Eqs. (12) and (13). Thus,
given a CFLP instance (Cost, D, C, F), the corresponding simplified MESS-HL problem
instance (R, S, C, ES) can be constructed. Since CFLP is NP-hard, the simplified
MESS-HL problem, through the mapping, is also NP-hard. Therefore, the original
MESS-HL problem is more complex than the CFLP, which has proven its NP-hard.

4.3 Approximately Optimum Algorithm for MESS-HL Problem

The pseudo-code in Algorithm 1 presents the overall structure of MHLSA. Com-
pared to the traditional SA, our approach incorporates heuristic information during the
initialization and perturbation phases. The details are elaborated as follows:

Initialization of MHLSA. To generate the initial solution �ini, we first classify each
heterogeneous request type. Then, leveraging user mobility trajectories and server load
status, we assign each edge service to an appropriate execution server. Specifically, if
si is UGD, we obtain the servers covering si’s submission position, denoted as ESsub cov .
Then, to balance response latency and system loads, we expand this set to include servers
within a short-hop distance, forming ESsh sub. Next, we choose a subset ES

sh′
sub from ESsh sub

492 G. Zou et al.

that have sufficient resources to execute si, according to Eq. (1). If ESsh′sub is empty, we
assign si to the lowest load ESmin load in ES

sh
sub. Otherwise, we randomly select a server ESexe i

from ESsh′sub to execute si. Similarly, if the request is ULD, we obtain the set of servers
covering the request receipt position, ESrec cov, and apply the same strategy. For UED, we
repeat the above operations for both ESsub cov and ES

rec
cov. After all edge services in S have

selected their execution servers, we generate the initial solution �ini.

Perturbation of MHLSA. To improve load balancing while minimizing the impact on
latency and energy consumption, we first identify the top K load servers ESload K . Then,
for each server esj in ESload K , we calculate the loads of servers within P-hop, denoted
by the set ESPr . We select servers with lighter loads from ESPr , represented by ESL Pr .
Next, we choose a set of edge services Sre on esj to reschedule based on the probability
pωi
e = 1

texe i
. This Selection enhances load balancing without significantly increasing

delay or resource, since edge services with shorter execution time incur less delay and
resource consumption during the transfer process. Each si ∈ Sre is rescheduled to an
appropriate execution server, using a heuristic-based operation, Reschedule.

The first step of Reschedule is to filter from ESL Pr a subset of servers with sufficient
resources to execute Sre, denoted as ESL suf based on Eq. (1). If ES

L
suf is empty, the server

with the lowest load in ESL Pr , denoted as ES
L
min, is selected as the new scheduling server

ESre. Otherwise, ESre is determined based on the request type of si and the mobility
trajectories of the corresponding edge user ui . Specifically, for UGD requests, we identify
the subset ESsub cov that covers the location where ui submits si via coverage constraint,

and select from ESL suf the server ES
hop
min with the shortest hop distance to ES

sub
cov as ESre.

A similar procedure is applied to ULD requests, but with focus on the set ESrev cov, which
covers the location where ui receives the response of si. For UED requests, the union
ESunion cov of ESsub cov and ES

rev
cov is considered. In all cases, if multiple servers satisfy the

shortest hop criterion, the one with the lowest load is chosen as ESre.

5 Experiments

5.1 Datasets and Experimental Setup

We conduct extensive experiments on two datasets widely used in edge computing:

• Shanghai Telecom Dataset1 : It contains 3,233 base stations within Shanghai, China.
It has been utilized as edge servers in numerous existing studies [13]. In our study,
we select 100 servers located in the central area of the Shanghai municipality.

• EUA Dataset2 : It comprises 125 base stations located in the Melbourne CBD area,
Australia. It has been extensively used as edge serves such as [14].

Additionally, we generate users of varying numbers and simulate their mobility
trajectories by referring to the Shanghai Qiangsheng Taxi GPS trace dataset3 .

1 http://www.sguangwang.com/TelecomDataset.html.
2 https://github.com/PhuLai/eua-dataset.
3 https://sodachallenges.com/datasets/taxi-gps/

http://www.sguangwang.com/TelecomDataset.html
https://github.com/PhuLai/eua-dataset
https://sodachallenges.com/datasets/taxi-gps/

Mobility-Aware Edge Service Scheduling with Request Heterogeneity 493

All experiments are conducted on a workstation equipped with two NVIDIA GeForce
1080Ti GPUs and an Intel Xeon Gold 6132 CPU running at 2.60 GHz.

5.2 Competing Approaches and Evaluation Metrics

To assess the performance of MHLSA, we compare it with eight existing approaches:

• Random: It randomly selects a server to execute the user’s edge service.

Table 1. Experimental results on SHT datasets with different edge services scales

Method 1000 Edge Services 1500 Edge Services 2000 Edge Services

ART TCC LB ART TCC LB ART TCC LB

Random 44.5 23130 0.67 47.9 35641 0.81 48.2 49625 1.12

Greedy 43.6 23945 0.07 54.1 36912 5.61 64.5 49137 25.08

ECFA 35.4 14961 0.06 37.6 21932 0.17 40.0 29462 1.17

CGWO 41.1 21468 0.89 45.0 35887 0.07 45.1 48645 0.59

AMO 44.0 24007 0.20 48.0 36505 0.49 48.2 48386 0.76

Sheu 43.4 23091 0.25 47.1 36204 0.61 46.0 47794 0.88

MHLSA-LB 31.9 12041 0.01 35.3 19054 0.01 36.5 25889 0.01

MHLSA-CC 25.6 4256 0.23 28.8 6478 0.15 30.3 8362 0.27

MHLSA 29.5 8580 0.20 31.6 12758 0.01 33.1 16936 0.01

• Greedy: It selects the server with the most available resources.
• ECFA [15]: It introduces a novel probability-based mapping method and an efficient

position update strategy. It selects servers by considering both latency and resource.
• CGWO [16]: It incorporates a new position update strategy for generating the next

generation. It greedily selects servers where edge services can start executing earlier.
• AMO [17]: It proposes a new bio-inspired optimization approach called Ant Mating

Optimization. It uses the uniform distribution method to generate initial solutions.
• Sheu [18]: It incorporates optimization-direction operations for generating a new

solution. It prefers servers with lighter loads or faster executing rate.
• MHLSA-CC: It is a variation of MHLSA that prioritizes selecting servers only from

those covering the user’s submission or receiving position.
• MHLSA-LB: It is a variation of MHLSA that prioritizes selecting the server within

more hops from the servers covering the user’s submission or receiving position.

5.3 Experimental Results and Analyses

Comparisons of Edge Service Scheduling. Table 1 and Table 2 provide a comprehen-
sive evaluation of our proposed MHLSA method against eight competing approaches

494 G. Zou et al.

across different edge service scales on two real-world datasets. The results demonstrate
that MHLSA and its two variants consistently achieve the best performance across all
three metrics, though under varying edge servers and edge service scales.

Compared with the two baselines (Random and Greedy), MHLSA exhibits signifi-
cantly superior performance across all three metrics, demonstrating the effectiveness of
heuristic-driven scheduling over naive or greedy selection strategies. More importantly,
taking SHT 2000 ES dataset as an example, MHLSA consistently outperforms exist-
ing state-of-the-art (SOTA) approaches. Firstly, ECFA, despite considering delay and
resource, it neglects server loads, leading to a 99.1% higher LB than MHLSA. Secondly,

Table 2. Experimental results on EUA datasets with different edge services scales

Method 1000 Edge Services 1500 Edge Services 2000 Edge Services

ART TCC LB ART TCC LB ART TCC LB

Random 50.8 32831 0.35 53.1 51447 0.79 58.1 69789 1.12

Greedy 40.5 32397 0.03 42.7 50277 0.28 51.4 69644 8.79

ECFA 37.6 16826 0.06 40.3 38608 0.05 49.2 43453 2.87

CGWO 48.8 31593 0.86 48.8 50617 0.09 54.8 69914 0.72

AMO 50.8 33391 0.29 52.3 50950 0.44 58.2 70226 0.71

Sheu 49.5 32020 0.31 51.3 50779 0.73 54.7 68152 0.74

MHLSA-LB 34.8 13983 0.01 36.8 23953 0.01 41.7 32904 0.01

MHLSA-CC 29.9 6102 0.18 31.5 10074 0.14 35.6 14303 0.40

MHLSA 32.6 10449 0.20 33.6 16763 0.02 38.4 23035 0.02

AMO, which employs uniform initialization without accounting for service and server
heterogeneity, exhibits a 31.3% higher ART, a 65.0% higher TCC, and a 98.7% higher
LB. Furthermore, Sheu, it begins with a random initialization, which inherently limits its
ability to converge to an optimum solution. Consequently, Sheu underperforms MHLSA
by 28.0% in ART, 64.6% in TCC, and 98.9% in LB. Lastly, compared with the most
recent SOTA method, CGWO, MHLSA achieves significant improvements of 26.6% in
ART, 65.0% in TCC, and 98.7% in LB. Overall, the consistent and substantial perfor-
mance gains across multiple datasets demonstrate the robustness, generalizability, and
applicability of MHLSA in real-world scenarios.

5.4 Performance Impact of Trajectory Prediction Deviations

Real-world scenarios inevitably involve trajectory prediction deviations. To better assess
MHLSA under such conditions, we conduct an experiment analyzing when trajectory
predictions deviate on the 2000 Edge Services SHT dataset under different values of P,
σx, and σy in Eq. (2). The results are shown in Fig. 1. The horizontal axis represents the
probability of accurate predictions, where P = 1 indicates no deviations. The vertical

Mobility-Aware Edge Service Scheduling with Request Heterogeneity 495

axis in each subplot represents the performance of three metrics: ART, TCC, and LB,
respectively. Each curve corresponds to a different level of position offsets δ.

As shown in Fig. 1, when the prediction accuracy P decreases and the position offset
δ increases, both the ART and TCC exhibit a growing trend. However, ART remains rel-
atively stable, even under the worst-case scenario, it increases by only about 1 unit. This
is due to MHLSA’s consideration of server loads, reducing the waiting latency, which
highlights MHLSA’s ability to effectively mitigate the impact of prediction deviations
on latency. Although TCC shows a more significant increase, MHLSA still outperforms
existing methods even assuming that they have the perfect trajectory prediction, under-
scoring the robustness of our approach. Regarding LB, as shown in Fig. 1(c), it declines
slightly as P decreases and δ increases. This is because the multi-objective.

Fig. 1. The impact of trajectory prediction deviation on MHLSA

optimization design of our energy function, the relatively large fluctuation in the
TCC drives the scheduling algorithm to prioritize improvements in ART and LB. Given
that ART exhibits minimal variation, the algorithm may prefer solutions with decreased
LB as the final scheduling outcome. Overall, MHLSA consistently maintains superior
performance across all metrics despite trajectory prediction deviations.

6 Conclusion

In this paper, we introduce MESS-HL, a novel edge service scheduling problem that
incorporates user mobility, request heterogeneity, and load balancing into consideration
compared with conventional service scheduling problems. We formulate MESS-HL as
a multi-objective optimization problem in MEC and prove its NP-hardness. To address
this challenge, we propose MHLSA, a heuristic simulated annealing-based algorithm
designed to minimize average response time, communication cost, and maintain server
load balancing. Experimental results demonstrate that MHLSA outperforms existing
methods, achieving superior scheduling efficiency, and maintaining robust performance
under trajectory prediction deviations. In future work, we aim to extend our approach to
handle workflow-based scheduling with complex task dependencies.

Acknowledgments. This work was supported by National Natural Science Foundation of China
(No. 62272290, 62172088).

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

496 G. Zou et al.

References

1. Lu, S., Wu, J., Lu, P., Wang, N., Liu, H., Fang, J.: Qos-aware on-line service provisioning and
updating in cost-efficient multi-tenant mobile edge computing. IEEE Trans. Serv. Comput.
17(1), 113–126 (2024)

2. Chu, S., Gao, C., Xu, M., Ye, K., Xiao, Z., Xu, C.: Efficient multi-task computation offloading
game for mobile edge computing. IEEE Trans. Serv. Comput. 17(1), 30–46 (2024)

3. Hu, Z., Niu, J., Ren, T., Guizani, M.: Achieving fast environment adaptation of DRL-based
computation offloading in mobile edge computing. IEEE Trans. Mob. Comput. 23(5), 6347–
6362 (2024)

4. Yang, Y., Wang, S.: EdgeOPT: a competitive algorithm for online parallel task scheduling
with latency guarantee in mobile edge computing. IEEE Trans. Commun. 72(11), 7077–7092
(2024)

5. Tong, Z., Ye, F., Mei, J., Liu, B., Li, K.: A novel task offloading algorithm based on an
integrated trust mechanism in mobile edge computing. J. Parallel Distributed Comput. 169,
185–198 (2022)

6. Cang, Y., et al.: Joint user scheduling and computing resource allocation optimization in
asynchronous mobile edge computing networks. IEEE Trans. Commun. 72(6), 3378–3392
(2024)

7. Lou, J., Tang, Z., Zhang, S., Jia, W., Zhao, W., Li, J.: Cost-effective scheduling for dependent
tasks with tight deadline constraints in mobile edge computing. IEEE Trans. Mob. Comput.
22(10), 5829–5845 (2023)

8. Ma, X., Zhou, A., Zhang, S., Li, Q., Liu, A.X., Wang, S.: Dynamic task scheduling in cloud-
assisted mobile edge computing. IEEE Trans. Mob. Comput. 22(4), 2116–2130 (2023)

9. Jiang, F., Peng, Y., Wang, K., Dong, L., Yang, K.: MARS: A DRL-based multi-task resource
scheduling framework for UAV with IRS-assisted mobile edge computing system. IEEE
Trans. Cloud Comput. 11(4), 3700–3712 (2023)

10. Sharif, Z., Jung, L.T., Razzak, I., Alazab, M.: Adaptive and priority-based resource allocation
for efficient resources utilization in mobile edge computing. IEEE Internet Things J. 10(4),
3079–3093 (2023)

11. Dong, X., Di, Z., Wang, L., Yao, Q., Li, G., Shen, Y.: Load balancing of double queues
and utility-workload tradeoff in heterogeneous mobile edge computing. IEEE Trans. Wirel.
Commun. 22(7), 4313–4326 (2023)

12. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajec-
tory hypotheses for behavior prediction. In: Proceedings of the Conference on Robot Learning,
pp. 86–99 (2020)

13. Li, Y., Zhou, A., Ma, X., Wang, S.: Profit-aware edge server placement. IEEE Internet Things
J. 9(1), 55–67 (2022)

14. He, Q., et al.: A game-theoretical approach for user allocation in edge computing environment.
IEEE Trans. Parallel Distributed Syst. 31(3), 515–529 (2020)

15. Yin, L., Sun, J., Zhou, J., Gu, Z., Li, K.: ECFA: an efficient convergent firefly algorithm
for solving task scheduling problems in cloud-edge computing. IEEE Trans. Serv. Comput.
16(5), 3280–3293 (2023)

16. Lian, Z., Shu, J., Zhang, Y., Sun, J.: Convergent grey wolf optimizer metaheuristics for
scheduling crowdsourcing applications in mobile edge computing. IEEE Internet Things J.
11(2), 1866–1879 (2024)

17. Ghanavati, S., Abawajy, J.H., Izadi, D.: An energy aware task scheduling model using ant-
mating optimization in fog computing environment. IEEE Trans. Serv. Comput.Comput.
15(4), 2007–2017 (2022)

18. Liu, H., Li, Y., Wang, S.: Request scheduling combined with load balancing in mobile-edge
computing. IEEE Internet Things J. 9(21), 20841–20852 (2022)

