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Abstract. The service request scheduling problem in Mobile Edge Computing 
(MEC) often overlooks user mobility, request heterogeneity, and server load dis-
tributions, resulting in increased latency and energy consumption. To address 
these challenges, we introduce the Mobility-Aware Edge Service Scheduling with 
Request Heterogeneity and Server Load Balancing (MESS-HL) problem, consid-
ering user mobility, data volume changes of service requests, and load balancing. 
By proving and solving the NP-hard MESS-HL problem, we propose a novel 
heuristic simulated annealing algorithm, MHLSA. It integrates user mobility tra-
jectories, heterogeneous requests, and server load status as heuristic information 
into both initialization and perturbation to find an approximately optimum solu-
tion. Comprehensive experiments on two real-world datasets show that MHLSA 
achieves an average improvement of 31.2% in response time, 62.2% in energy 
consumption, and 48.9% in load balancing over existing methods. 

Keywords: Mobile Edge Computing · Edge Service Scheduling · User 
Mobility · Request Heterogeneity · Server Load Balancing 

1 Introduction 

With the rapid development of 5G and Artificial Intelligence, the demand for com-
putationally intensive and low-latency sensitive applications, such as real-time video 
analysis, autonomous driving, and virtual/augmented reality, has significantly increased 
[1]. Traditional cloud computing, relying on distant centralized data centers, often suffers 
from high latency and inefficiency [2]. Mobile Edge Computing (MEC) has emerged 
as a promising extension of cloud computing, which addresses this issue by deploy-
ing resources closer to end users, significantly reducing response time [3]. Despite its 
advantages, MEC faces critical challenges. First, resource constraints limit the comput-
ing capabilities of edge servers compared to cloud data centers [4]. Second, coverage 
limitations restrict user-server interactions within specific geographical areas [5].
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Although service scheduling in MEC has been extensively studied, existing 
approaches suffer from three major limitations. First, user mobility is often overlooked, 
most approaches assume static user locations at request time, ignoring mobility during 
execution. If the user moves out of the executing server’s coverage area, it will lead to 
extra delays and resources to respond with the result. Second, request heterogeneity is 
ignored, upstream and downstream data volumes can differ significantly across edge 
services. Failing to account for this leads to inefficient scheduling and increased latency. 
Third, load balancing is often under-addressed, many approaches pursue high resource 
utilization but neglect load distribution, causing some servers to be overloaded while 
others remain underutilized, which may degrade edge system’s responsiveness. 

To tackle these challenges, we formulate the Mobility-Aware Edge Service 
Scheduling with Request Heterogeneity and Server Load Balancing (MESS-HL) prob-
lem, which explicitly incorporates user mobility, request heterogeneity of edge ser-
vices, and server load balancing into consideration. Based on the transformation from 
a MESS-HL problem to a multi-objective optimization problem, we prove its NP-
hardness and propose a heuristic approach based on Simulated Annealing (SA) to find 
an approximately optimum scheduling solution, which is called Mobility, Heterogeneous 
Requests and Load Balancing-aware SA (MHLSA), which enhances the performance 
of scheduling edge services for better satisfying users’ diverse service demands. 

In summary, our main contributions are listed as follows: 

• We formulate a novel edge service scheduling problem called MESS-HL by consid-
ering three key factors for better reflecting the situations in real applications. Also, 
we model it as a multi-objective optimization problem that is proven to be NP-hard. 

• We propose an improved simulated annealing algorithm named MHLSA to solve the 
NP-hard MESS- HL problem, which enhances the standard SA by incorporating 
user mobility, heterogeneous requests of edge services, and edge server load status 
as heuristic information into initialization and perturbation operations. 

• Our proposed method MHLSA outperforms existing approaches across all metrics 
in two real-world datasets. Experimental results demonstrate the superiority and 
generality of MHLSA for handling edge service scheduling. 

2 Related Work 

In recent years, edge service scheduling in MEC has garnered significant attentions. 
Minimizing latency is a fundamental objective in edge service scheduling. Cang et al. 
[6] tackled the issue of asynchronous service request arrivals in MEC by employing the 
Benders decomposition method, effectively improving scheduling efficiency through 
problem decomposition. Lou et al. [7] proposed the DCDS method to optimize dependent 
task scheduling under stringent deadlines, integrating long-term impact assessments of 
immediate scheduling decisions. However, these studies largely overlook the impact of 
user mobility, as users move across the coverage areas of different edge servers, response 
results are transferred among multiple servers, introducing additional delays. 

Given the resource constraints of edge servers, resource consumption optimization 
is important in edge service scheduling. Ma et al. [8] introduced WiDaS, a dynamic 
scheduling algorithm that optimizes response time within a fixed resource budget. Jiang
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et al. [9] applied a multi-task resource scheduling approach based on reinforcement 
learning, targeting energy minimization. However, these approaches have not considered 
the request heterogeneity, which may trigger additional costs like bandwidth. 

Maintaining workload distribution is crucial to preventing performance degradation 
of edge servers. While many studies focus on maximizing resource utilization, which 
can lead to partial servers being overburdened while others remain underutilized [10]. 
Though some studies acknowledge this issue, their approaches have limitations. Dong 
et al. [11] proposed a Lyapunov-based online matching algorithm to balance system 
utility and workload distribution, yet it overlooked the heterogeneity of requests. 

3 Problem Formulation 

Given a set of m edge severs ES = {es1, es2, ..., esm} and n edge users U = 
{u1, u2, ..., un} in a particular area, each user submits one edge service defined below. 

Definition 1 (Edge Service). Given an edge user u, u’s edge service s encompasses a 
specific type of request r ∈ {UGD, ULD, UED}. 

We classify request types based on edge service (ES) and its corresponding response 
result (RR) data volume changes: (1) UGD Request, like image analysis, where 
large input image data generates compact textual results; (2) ULD Request, like 
search engines, where lightweight queries return rich multimedia content; and (3) 
UED Request, where input and output sizes are approximately balanced, like file 
synchronization. 

Definition 2 (Coverage Constraint). To determine whether a user ui can interact with 
the edge server esj at time t, the distance dij between them at the moment should be no 
more than esj’s coverage radius Resj , which is depicted as d

t 
i,j ≤ R

(
esj

)
. 

Definition 3 (Resources Constraint). Assuming that there have been a set of edge 
services D(esi) = {s1 esi , s2 esi , . . .  } on esi, if  esi wants to start executing the edge service 
sj, it must satisfy the conditions in Eq. (1): 

Cj +
∑

sk esi∈Desj 

Ck ≤ Ces 

Mj +
∑

sk esi∈Desj 

Mk ≤ Mesi 

(1) 

where Cj and Mj are the computational and memory resources required by request sj. 
Cesi and Mesi refer to the total computational and memory resources of edge server esi. 

Definition 4 (Mobility Trajectory). The user’s mobility trajectories Mu is the sequence 
of all positions during the interaction between the user and the edge system. 

In our experiments, we assume that all approaches can obtain users’ mobility tra-
jectories at any time. To reflect real-world scenarios, in Sect. 5.4, we conduct a detailed
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discussion about the impact of prediction deviations on our approach, using a simulation 
approach inspired by the methodology presented in [12], as shown below: 

Merr = F(
P, δx, δy

)
(2) 

where P denotes the probability of accurate trajectory prediction, δx and δy represent the 
position offsets in the x and y directions, which both follow a Gaussian distribution. 

Definition 5 (Response Time). The response time T consists of three components: 

T = texe + twait + ttr (3) 

where texe is the execution time required by the server. If a server lacks sufficient 
resources when the ES arrives, the request must wait before execution, denoted as twait . 
The mobility of users may lead to transfer delay ttr . It is described separately as below. 

Definition 6 (Transfer Delay). Transfer delay includes the upload of the ES and the 
return of the RR, which depends on hop counts between servers and affected by a 
bandwidth factor φ reflecting real-world network fluctuations, as shown below: 

ttr = ttr up + ttr down 
ttr up = Trtime up · hopu,e · φup 

ttr down = Trtime down · hope,d · φdown 

(4) 

where Trtime indicates the ideal time for an ES and its RR to transfer between edge 
servers over a single hop. The bandwidth factor φ is defined in Eq. (5): 

φup = f
(

du,e 
hopu,e

)

φdown = f
(

de,d 
hope,d

)

f (x) = 1 + ε 
1+ex 

(5) 

where d is the Euclidean distance between two servers. ε is sampled from (−0.1,0.1). 

Definition 7 (Communication Cost). We define the total resources consumed by the 
transfer of an edge service and its corresponding response result among multiple edge 
servers as the Communication Cost (CC), which is expressed in Eq. (6): 

CCtr = CCtr 
up + CCtr 

down 
CCtr 

up = Trbd up · hopu,e · φup 

CCtr 
down = Trbd down · hope,d · φdown 

(6) 

where CCtr 
up and CC

tr 
down represent the resources consumed by the transfer of the ES 

before execution and the RR after execution, respectively. Trbd is the ideal resource 
consumption required to transfer the ES or the RR between edge servers in one hop.
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Definition 8 (Server Load Status). The load status of an es is defined in Eq. (7): 

esload = esexe load + θ · eswait load 
esexe load = Cexe 

C + Mexe 
M 

eswait load = Cwait 
C + Mwait 

M 

(7) 

where esexe load and es
wait 
load represent the load of requests on es executing and waiting, 

respectively. Under the same conditions, we aim to keep the backlogs on the es as 
minimal as possible. Therefore, we multiply eswait load by a coefficient θ greater than 1. 

Definition 9 (MESS-HL Problem). The MESS-HL problem can be defined as a five 
tuple MESS-HL = 〈U, ES, S, M, L〉, where U is a set of users, ES is a set of edge servers, 
S is a set of edge services submitted by edge users, M is the trajectories corresponding 
to each user u, L denotes the load status corresponding to each edge server es. 

4 Approach 

4.1 MESS-HL Problem Optimization Modeling 

We evaluate the scheduling performance using three key metrics: average response time 
(ART ), total communication cost (TCC), and load balancing (LB). Specifically, ART is 
the mean latency experienced by users and is computed as ART = 1 

|U|
∑

T , where T 
is the response time for each service request based on Eq. (3). TCC quantifies the total 
communication overhead and is defined based on Eq. (6) as  TCC = ∑

CCtr , with CCtr 

representing the per-request transfer cost. LB assesses load balancing of the edge system 
and is calculated as the variance of esload in Eq. (7). 

Given a MESS-HL problem, we use the weighted sum method to convert the original 
multi-objective optimization problem into a single-objective optimization problem: 

min(α · ART + β · TCC + γ · LB) (8) 

s.t. 

0 < α, β, γ < 1 (9)

∑|ES| 
j=1 

xi,j = 1, ∀i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., m} (10) 

dt 
i,jy

t 
i,j ≤ R

(
esj

)
, ∀i ∈ {1, 2, ..., n}, j ∈ {1, 2 , ..., m} (11) 

where xi,j and yt i,j are binary variables indicating that: 

xij =
{
1, if si is executed on esj 
0, otherwise 

(12)
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yi,j =
{
1, if ui can interact with esj at time t 
0, otherwise 

(13) 

In the objective function (8), we aim to minimize the average response time and total 
communication costs of all edge services while considering edge system load balancing. 
Equation (10) imposes the constraint that each edge service must be executed and can 
only be executed by a single edge server. Equation (11) imposes the constraint that a 
user can only interact with edge servers which cover him. 

4.2 NP-Hardness Proving of MESS-HL Problem 

Definition 10 (CFLP). The CFLP can be formulated as follows: 

min
∑

i∈F 
hiyi +

∑

i∈F

∑

j∈D 
Costi,jxi,j (14) 

s.t.
∑

i∈F xi,j = 1, ∀j ∈ D (15)

∑

j∈D djxi,j ≤ ciyi, ∀i ∈ F (16) 

xi,j, yi ∈ {0, 1}, ∀i ∈ F, ∀j ∈ D (17) 

where yi denotes whether facility i is open, xi,j indicates whether demand dj is fulfilled by 
facility i, and Costi,j represents the cost of serving demand j from facility i. Furthermore, 
ci corresponds to the capacity of facility i. 

Theorem 1. The MESS-HL problem is NP-hard. 

Proof. We make the following assumptions to construct a simplified MESS-HL: 

• We focus solely on latency and ignore other two parts in Eq. (8). 
• There is only one type of resource, C in the problem. 
• The total available resources across all edge servers exceed the total resource demand 

of all submitted edge services from users. 
• Each edge service begins execution immediately upon arrival. 
• All users are stationary during their interaction with the edge environment. 

With these assumptions, we can obtain a response time matrix
[
R〉,|

]

n,m 
, where n 

and m represent the number of edge services and edge servers, respectively. Let the 
resources of all edge servers form the set C. As there is no cost to run an edge server 
in the MESS-HL Problem, the first part of the CFLP objective,

∑
i∈F hiyi in Eq. (14) 

can be neglected. Under these conditions, the objective in Eq. (14) can be mapped to 
the objective in Eq. (8), the constraint in Eq. (15) can be mapped to the constraint in 
Eq. (10), the constraint in Eq. (16) can be mapped to the constraint in Eq. (11), and
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the constraint in Eq. (17) can be mapped to the constraints in Eqs. (12) and (13). Thus, 
given a CFLP instance (Cost, D, C, F), the corresponding simplified MESS-HL problem 
instance (R, S, C, ES) can be constructed. Since CFLP is NP-hard, the simplified 
MESS-HL problem, through the mapping, is also NP-hard. Therefore, the original 
MESS-HL problem is more complex than the CFLP, which has proven its NP-hard. 

4.3 Approximately Optimum Algorithm for MESS-HL Problem 

The pseudo-code in Algorithm 1 presents the overall structure of MHLSA. Com-
pared to the traditional SA, our approach incorporates heuristic information during the 
initialization and perturbation phases. The details are elaborated as follows: 

Initialization of MHLSA. To generate the initial solution �ini, we first classify each 
heterogeneous request type. Then, leveraging user mobility trajectories and server load 
status, we assign each edge service to an appropriate execution server. Specifically, if 
si is UGD, we obtain the servers covering si’s submission position, denoted as ESsub cov . 
Then, to balance response latency and system loads, we expand this set to include servers 
within a short-hop distance, forming ESsh sub. Next, we choose a subset ES

sh′
sub from ESsh sub
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that have sufficient resources to execute si, according to Eq. (1). If ESsh′sub is empty, we 
assign si to the lowest load ESmin load in ES

sh 
sub. Otherwise, we randomly select a server ESexe i 

from ESsh′sub to execute si. Similarly, if the request is ULD, we obtain the set of servers 
covering the request receipt position, ESrec cov, and apply the same strategy. For UED, we  
repeat the above operations for both ESsub cov and ES

rec 
cov. After all edge services in S have 

selected their execution servers, we generate the initial solution �ini. 

Perturbation of MHLSA. To improve load balancing while minimizing the impact on 
latency and energy consumption, we first identify the top K load servers ESload K . Then, 
for each server esj in ESload K , we calculate the loads of servers within P-hop, denoted 
by the set ESPr . We select servers with lighter loads from ESPr , represented by ESL Pr . 
Next, we choose a set of edge services Sre on esj to reschedule based on the probability 
pωi 
e = 1 

texe i 
. This Selection enhances load balancing without significantly increasing 

delay or resource, since edge services with shorter execution time incur less delay and 
resource consumption during the transfer process. Each si ∈ Sre is rescheduled to an 
appropriate execution server, using a heuristic-based operation, Reschedule. 

The first step of Reschedule is to filter from ESL Pr a subset of servers with sufficient 
resources to execute Sre, denoted as ESL suf based on Eq. (1). If ES

L 
suf is empty, the server 

with the lowest load in ESL Pr , denoted as ES
L 
min, is selected as the new scheduling server 

ESre. Otherwise, ESre is determined based on the request type of si and the mobility 
trajectories of the corresponding edge user ui . Specifically, for UGD requests, we identify 
the subset ESsub cov that covers the location where ui submits si via coverage constraint, 

and select from ESL suf the server ES
hop 
min with the shortest hop distance to ES

sub 
cov as ESre. 

A similar procedure is applied to ULD requests, but with focus on the set ESrev cov, which 
covers the location where ui receives the response of si. For UED requests, the union 
ESunion cov of ESsub cov and ES

rev 
cov is considered. In all cases, if multiple servers satisfy the 

shortest hop criterion, the one with the lowest load is chosen as ESre. 

5 Experiments 

5.1 Datasets and Experimental Setup 

We conduct extensive experiments on two datasets widely used in edge computing: 

• Shanghai Telecom Dataset1 : It contains 3,233 base stations within Shanghai, China. 
It has been utilized as edge servers in numerous existing studies [13]. In our study, 
we select 100 servers located in the central area of the Shanghai municipality. 

• EUA Dataset2 : It comprises 125 base stations located in the Melbourne CBD area, 
Australia. It has been extensively used as edge serves such as [14]. 

Additionally, we generate users of varying numbers and simulate their mobility 
trajectories by referring to the Shanghai Qiangsheng Taxi GPS trace dataset3 .

1 http://www.sguangwang.com/TelecomDataset.html. 
2 https://github.com/PhuLai/eua-dataset. 
3 https://sodachallenges.com/datasets/taxi-gps/ 

http://www.sguangwang.com/TelecomDataset.html
https://github.com/PhuLai/eua-dataset
https://sodachallenges.com/datasets/taxi-gps/
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All experiments are conducted on a workstation equipped with two NVIDIA GeForce 
1080Ti GPUs and an Intel Xeon Gold 6132 CPU running at 2.60 GHz. 

5.2 Competing Approaches and Evaluation Metrics 

To assess the performance of MHLSA, we compare it with eight existing approaches: 

• Random: It randomly selects a server to execute the user’s edge service. 

Table 1. Experimental results on SHT datasets with different edge services scales 

Method 1000 Edge Services 1500 Edge Services 2000 Edge Services 

ART TCC LB ART TCC LB ART TCC LB 

Random 44.5 23130 0.67 47.9 35641 0.81 48.2 49625 1.12 

Greedy 43.6 23945 0.07 54.1 36912 5.61 64.5 49137 25.08 

ECFA 35.4 14961 0.06 37.6 21932 0.17 40.0 29462 1.17 

CGWO 41.1 21468 0.89 45.0 35887 0.07 45.1 48645 0.59 

AMO 44.0 24007 0.20 48.0 36505 0.49 48.2 48386 0.76 

Sheu 43.4 23091 0.25 47.1 36204 0.61 46.0 47794 0.88 

MHLSA-LB 31.9 12041 0.01 35.3 19054 0.01 36.5 25889 0.01 

MHLSA-CC 25.6 4256 0.23 28.8 6478 0.15 30.3 8362 0.27 

MHLSA 29.5 8580 0.20 31.6 12758 0.01 33.1 16936 0.01 

• Greedy: It selects the server with the most available resources. 
• ECFA [15]: It introduces a novel probability-based mapping method and an efficient 

position update strategy. It selects servers by considering both latency and resource. 
• CGWO [16]: It incorporates a new position update strategy for generating the next 

generation. It greedily selects servers where edge services can start executing earlier. 
• AMO [17]: It proposes a new bio-inspired optimization approach called Ant Mating 

Optimization. It uses the uniform distribution method to generate initial solutions. 
• Sheu [18]: It incorporates optimization-direction operations for generating a new 

solution. It prefers servers with lighter loads or faster executing rate. 
• MHLSA-CC: It is a variation of MHLSA that prioritizes selecting servers only from 

those covering the user’s submission or receiving position. 
• MHLSA-LB: It is a variation of MHLSA that prioritizes selecting the server within 

more hops from the servers covering the user’s submission or receiving position. 

5.3 Experimental Results and Analyses 

Comparisons of Edge Service Scheduling. Table 1 and Table 2 provide a comprehen-
sive evaluation of our proposed MHLSA method against eight competing approaches
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across different edge service scales on two real-world datasets. The results demonstrate 
that MHLSA and its two variants consistently achieve the best performance across all 
three metrics, though under varying edge servers and edge service scales. 

Compared with the two baselines (Random and Greedy), MHLSA exhibits signifi-
cantly superior performance across all three metrics, demonstrating the effectiveness of 
heuristic-driven scheduling over naive or greedy selection strategies. More importantly, 
taking SHT 2000 ES dataset as an example, MHLSA consistently outperforms exist-
ing state-of-the-art (SOTA) approaches. Firstly, ECFA, despite considering delay and 
resource, it neglects server loads, leading to a 99.1% higher LB than MHLSA. Secondly, 

Table 2. Experimental results on EUA datasets with different edge services scales 

Method 1000 Edge Services 1500 Edge Services 2000 Edge Services 

ART TCC LB ART TCC LB ART TCC LB 

Random 50.8 32831 0.35 53.1 51447 0.79 58.1 69789 1.12 

Greedy 40.5 32397 0.03 42.7 50277 0.28 51.4 69644 8.79 

ECFA 37.6 16826 0.06 40.3 38608 0.05 49.2 43453 2.87 

CGWO 48.8 31593 0.86 48.8 50617 0.09 54.8 69914 0.72 

AMO 50.8 33391 0.29 52.3 50950 0.44 58.2 70226 0.71 

Sheu 49.5 32020 0.31 51.3 50779 0.73 54.7 68152 0.74 

MHLSA-LB 34.8 13983 0.01 36.8 23953 0.01 41.7 32904 0.01 

MHLSA-CC 29.9 6102 0.18 31.5 10074 0.14 35.6 14303 0.40 

MHLSA 32.6 10449 0.20 33.6 16763 0.02 38.4 23035 0.02 

AMO, which employs uniform initialization without accounting for service and server 
heterogeneity, exhibits a 31.3% higher ART, a 65.0% higher TCC, and a 98.7% higher 
LB. Furthermore, Sheu, it begins with a random initialization, which inherently limits its 
ability to converge to an optimum solution. Consequently, Sheu underperforms MHLSA 
by 28.0% in ART, 64.6% in TCC, and 98.9% in LB. Lastly, compared with the most 
recent SOTA method, CGWO, MHLSA achieves significant improvements of 26.6% in 
ART, 65.0% in TCC, and 98.7% in LB. Overall, the consistent and substantial perfor-
mance gains across multiple datasets demonstrate the robustness, generalizability, and 
applicability of MHLSA in real-world scenarios. 

5.4 Performance Impact of Trajectory Prediction Deviations 

Real-world scenarios inevitably involve trajectory prediction deviations. To better assess 
MHLSA under such conditions, we conduct an experiment analyzing when trajectory 
predictions deviate on the 2000 Edge Services SHT dataset under different values of P, 
σx, and σy in Eq. (2). The results are shown in Fig. 1. The horizontal axis represents the 
probability of accurate predictions, where P = 1 indicates no deviations. The vertical
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axis in each subplot represents the performance of three metrics: ART, TCC, and LB, 
respectively. Each curve corresponds to a different level of position offsets δ. 

As shown in Fig. 1, when the prediction accuracy P decreases and the position offset 
δ increases, both the ART and TCC exhibit a growing trend. However, ART remains rel-
atively stable, even under the worst-case scenario, it increases by only about 1 unit. This 
is due to MHLSA’s consideration of server loads, reducing the waiting latency, which 
highlights MHLSA’s ability to effectively mitigate the impact of prediction deviations 
on latency. Although TCC shows a more significant increase, MHLSA still outperforms 
existing methods even assuming that they have the perfect trajectory prediction, under-
scoring the robustness of our approach. Regarding LB, as shown in Fig. 1(c), it declines 
slightly as P decreases and δ increases. This is because the multi-objective. 

Fig. 1. The impact of trajectory prediction deviation on MHLSA 

optimization design of our energy function, the relatively large fluctuation in the 
TCC drives the scheduling algorithm to prioritize improvements in ART and LB. Given  
that ART exhibits minimal variation, the algorithm may prefer solutions with decreased 
LB as the final scheduling outcome. Overall, MHLSA consistently maintains superior 
performance across all metrics despite trajectory prediction deviations. 

6 Conclusion 

In this paper, we introduce MESS-HL, a novel edge service scheduling problem that 
incorporates user mobility, request heterogeneity, and load balancing into consideration 
compared with conventional service scheduling problems. We formulate MESS-HL as 
a multi-objective optimization problem in MEC and prove its NP-hardness. To address 
this challenge, we propose MHLSA, a heuristic simulated annealing-based algorithm 
designed to minimize average response time, communication cost, and maintain server 
load balancing. Experimental results demonstrate that MHLSA outperforms existing 
methods, achieving superior scheduling efficiency, and maintaining robust performance 
under trajectory prediction deviations. In future work, we aim to extend our approach to 
handle workflow-based scheduling with complex task dependencies. 
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