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ABSTRACT: The goal of drug repositioning is to expedite the drug development process by finding novel therapeutic applications
for approved drugs. Using multifeature learning, different computational drug repositioning techniques have recently been
introduced to predict possible drug−disease relationships. Nevertheless, current graph-based methods tend to model drug−disease
interaction relationships without considering the semantic influence of node-specific side information on graphs. These approaches
also suffer from the noise and sparsity inherent in the data. To address these limitations, we propose MDGCN, a novel drug
repositioning method that incorporates multidependency graph convolutional networks and contrastive learning. Based on drug and
disease similarity matrices and the drug−disease relationships matrix, this approach constructs multidependency graphs. It
subsequently employs graph convolutional networks to spread side information between various graphs in each layer. Meanwhile, the
weak supervision of drug−disease connections is effectively addressed by introducing cross-view and cross-layer contrastive learning
to align node embedding across various views. Extensive experiments show that MDGCN performs better in drug−disease
association prediction than seven advanced methods, offering strong support for investigating novel therapeutic indications for
medications of interest.

■ INTRODUCTION
Despite substantial investment increases in drug discovery, the
approval rate of new drugs continues to stagnate. Modern
innovations in genomics, biotechnology, and computational
tools have made strides but have not drastically shortened the
drug discovery timeline.1,2 This highlights the pressing need for
innovative methodologies to speed up drug development and
address critical health challenges.3 Recently, the concept of drug
repositioning has drawn significant attention. It aims to uncover
additional therapeutic potentials for approved drugs, extending
their use beyond their primary medical indications.4 By
circumventing lengthy clinical trials, drug repositioning notably
cuts down on the time, financial investment, and uncertainties
inherent in conventional drug discovery processes, thereby
offering a valuable alternative route for drug discovery.
To address drug repositioning, researchers have explored a

variety of computational approaches, such as machine learning,
matrix factorization, and network-based techniques.5 Specifi-

cally, machine learning-based drug repositioning methods
extract features from existing drug−disease interaction data to
predict potential new uses for existing drugs.6,7 For instance, a
kernel-based support vector machine is employed to predict
drug repositioning based on integrated multilayer drug-related
features.8 DRP-VEM9 adopts a voting ensemble training
strategy to overcome the serious imbalance problem between
positive and negative instances. However, these methods rely
heavily on feature extraction and negative sample selection.
Differently, the strength of the correlations between drugs and
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diseases is evaluated by using the dot product of their learned
representations in matrix factorization-based techniques, which
embed drugs and diseases into a common hidden space.
DRIMC10 develops a Bayesian inductive matrix completion
technique that integrates multiple similarity matrices of drug
characteristics and disease features for link prediction. Addi-
tionally, BNNR11 employs a bounded nuclear norm constraint
to reconstruct the drug−disease association matrix, leveraging
its low-rank structural assumption for effective matrix
completion. TIWMFLP12 develops a two-tier interactive
framework to integrate multiple similarities. Despite their
effectiveness, these methods face challenges in identifying the
intricate relationships within drug−disease association data and
in managing complex matrix operations on a large scale.
Network-based drug repositioning methods model the relation-
ships among various biological entities, such as drugs, diseases,
proteins, and genes, to explore more efficient representations of
drugs and diseases.5 For instance, deepDR13 learns latent
features from ten drug-related networks using a multimodal
deep autoencoder and identifies potential drug−disease
associations through a collective variational autoencoder.
AMDGT14 introduces dual-graph transformer modules with
complex biochemical knowledge to identify new indications of
medicines. Nonetheless, integrating biological data requires
prior knowledge and combining large-scale and diverse data sets,
such as chemical, biological, and clinical information, into a
cohesive framework presents significant challenges.
Recently, due to the ability of effectively extracting key

patterns, graph neural networks (GNNs) have been increasingly
used to model drug−disease association networks. These drug
repositioning methods typically use drug similarity matrix and
disease similarity matrix as features of drug−disease heteroge-

neous graph, inputting them into GNNs for further encoding
node representations.15,16 DRWBNCF17 utilizes weighted
bilinear graph convolution operations to learn unified
representations of drugs and diseases. DRHGCN18 introduces
graph convolution operations and a mechanism to selectively
emphasize different layers, enabling the extraction of inter-
domain and intradomain embeddings for prediction. AdaDR19

is an adaptive framework based on GCNs that employs an
attention-based strategy to integrate information from node-
level data and their corresponding graph structures. However,
most existing GCN-based drug repositioning models primarily
focus on the drug−disease interaction graph and do not fully
exploit auxiliary information from homogeneous drug−drug and
disease−disease dependencies. They often overlook the fact that
the treatment efficacy of drugs can vary due to their unique
chemical structures, which may differ from the drug−disease
interaction patterns. With the advancement of GNN mod-
els,20−23 more sophisticated architectures have been proposed
to capture complex relationships in biomedical networks,
offering new opportunities for drug repositioning. Recent
research indicates that homogeneous dependency graphs can
serve as side information to augment specific node representa-
tions. However, effectively integrating and fully utilizing
homogeneous and heterogeneous supervised information
remains challenging. Recent works24,25 adopt contrastive
learning for drug repositioning; they rely on single-strategy
contrastive objectives, limiting their robustness to sparse and
noisy interaction data.
To tackle these issues, we propose MDGCN, an innovative

approach for drug repositioning that leverages multidependency
graph convolutional networks and contrastive learning. Initially,
we construct two homogeneous dependency graphs from drug

Figure 1. Toy example of multidependency graph convolutional networks. (a) Drug−disease bipartite graph. (b) Drug−drug graph and (c) disease−
disease graph, both constructed using their respective similarity matrices and KNN algorithm with k = 2.
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and disease similarity matrices alongside a heterogeneous
dependency graph using the drug−disease association matrix.
Unlike existing methods that primarily focus on the heteroge-
neous graph, MDGCN systematically incorporates multiple
dependencies to propagate node-specific side information from
homogeneous graph through multilayer GCNs, facilitating the
learning of richer drug and disease representations with the
comprehensive integration of structural and semantic informa-
tion across dependency graphs. Furthermore, MDGCN
employs a dual-strategy approach that simultaneously performs
cross-view and cross-layer contrastive learning. Cross-view
contrastive learning generates self-supervision signals for data
augmentation through the consistency among diverse views,
while cross-layer contrastive learning further enhances hier-
archical feature interactions, preserving and refining information
across different graph layers. This joint strategy not only
improves representation learning but also mitigates issues
related to data sparsity and noise in drug repositioning tasks.
Ultimately, the predictor utilizes the optimized embeddings of
drug and disease nodes to infer potential drug−disease
associations.
In summary, the main contributions of this work can be

outlined as follows:

• MDGCN proposes a general framework for cross-view
information exchange, which constructs multidependency
graphs from drug−drug, disease−disease similarities, and
drug−disease associations and employs multilayer graph
convolutional networks to embed node features and
propagate node-specific side information across diverse
graphs.

• MDGCN introduces two different contrastive learning
strategies to enhance its representation learning capacity.
The cross-view contrastive learning is to align node
embeddings in different dependency graphs, and cross-

layer contrastive learning further coordinates high-order
semantics and low-order features.

• Experiments on four benchmark data sets demonstrate
that MDGCN outperforms seven state-of-the-art meth-
ods in drug−disease association prediction. Furthermore,
additional experiments on a multirelational data set
validate the effectiveness of MDGCN in handling
complex heterogeneous graphs, further demonstrating
its adaptability in drug−disease association prediction.

Figure 1 illustrates a toy example of multidependency graphs,
providing a clear explanation of how the graph convolution
model integrates multiple dependencies. During the graph
convolution process, the collaboration between the homoge-
neous graphs in Figure 1(b,c) enables the target nodes r1 and d1
in Figure 1(a) to focus earlier on their respective one-hop
neighbors (r2, r5) and (d2, d4). This facilitates the filtering of
noisy information when aggregating two-hop neighbors (r2, r3,
r4, r5), as r3 and r4 may not be as important as r2 and r5. Similarly,
for target node d1 in Figure 1(a), greater attentionmay be paid to
d2 rather than d3 among its two-hop neighbors. Furthermore, in
Figure 1(b), nodes r2, r4, r6, and r7 at the two-hop level might
exhibit equal importance to r1. However, through the
collaboration with two-hop neighbors (r2, r3, r4, r5) of r1 in
Figure 1(a), r1 can effectively distinguish more influential nodes
such as r2 and r4. Similarly, for d1, the two-hop neighbors d2 and
d3 in Figure 1(c) may be more significant compared to d5 and d6.
The multidependency graphs collaboratively interact at each
layer of the graph convolution process, enabling target nodes to
suppress noisy information, focus on more relevant signals, and
ultimately learn more discriminative node embeddings.

■ MATERIALS AND METHODS
Overviewof the ProposedMDGCNModel.MDGCN is a

novel drug repositioning method based on multidependency
graph convolutional networks and contrastive learning. It

Figure 2. Overall architecture of MDGCN involves three main steps. First, two homogeneous dependency graphs are constructed from drug and
disease similarity matrices, and a heterogeneous dependency graph is constructed from the drug−disease association matrix. Second, multilayer graph
convolutional networks are utilized to comprehensively learn drug and disease embeddings on these dependency graphs. Third, cross-view and cross-
layer contrastive learning are introduced to enhance node embeddings for drug−disease association prediction.
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formulates drug repositioning as a link prediction problem,
determining whether a therapeutic relationship exists between a
specific drug and a target disease. As illustrated in Figure 2,
MDGCN involves three main steps. First, we construct drug-
related and disease-related graphs based on the drug similarity
matrix, disease similarity matrix, and drug−disease association
matrix, initializing drug and disease embeddings according to
their IDs. Then, multidependency graph learning is introduced
to extract and fuse isomorphic and heteromorphic information,
updates node embeddings across different dependency graphs,
and aggregates layer-specific representations. Lastly, we
introduce cross-view contrastive learning to align node
embeddings in different dependency graphs and further utilize
cross-layer contrastive learning to balance high-order semantics
and low-order features.
Construction of Multidependency Graphs. Homoge-

neous Dependency Graph. Each benchmark data set provides a
drug−drug similarity matrix Sr M M× and a disease−disease
similarity matrix Sd N N× , where M is the number of drugs
and N is the number of diseases. These similarity matrices
provide information about drug substructures and semantic
information about disease phenotypes. And Sr(i, j) represents
the similarity between drug i and drug j, while Sd(i, j) represents
the similarity between disease i and disease j. As the dense
similarity information may lead to overly smooth features
learned by the graph convolutional networks,26 we first process
Sr and Sd into homogeneous but sparse KNN graphs,

,r
r rr= { } and ,d

d dd= { }, to capture isomorphic
dependency information. Here, r and d, respectively,
represent the set of drug and disease nodes, while rr and dd
represent the set of edges of drug pairs and disease pairs. The
adjacency matrix corresponding to r is denoted as a binary
matrix Ar M M× , where each entry of Ar is computed based
on the similarity between each pair of drugs. For convenience,
the ith drug in the data set is denoted as ri, where i = 1, 2, ···,M.
Then, the entry Aijr is defined as

A
r r1, if ( )

0, otherwise
ij
r j k i

l
m
ooo
n
ooo=

(1)

where r r r( ) ( )k i i k i= { } is the extended k-nearest neighbor
set of ri including ri itself and r( )k i is the k-nearest neighbors of
drug ri. Similarly, di represents the ith disease in the data set,
where i = 1, 2, ···,N. The entry Aijd of the binary adjacency matrix
Ad N N× corresponding to d is defined as

A
d d1, if ( )

0, otherwise
ij
d j k i

l
m
ooo
n
ooo=

(2)

where d d d( ) ( )k i i k i= { } is the extended k-nearest
neighbor set of di including, di itself, and d( )k i is the k-nearest
neighbor of disease di.

Heterogeneous Dependency Graph. Based on the drug−
disease association matrix and zero matrices, we construct the
heterogeneous dependency graph. An association network
between drugs and diseases is depicted by a binary matrix
A M N× , whereM andN, respectively, denote the quantity of
drug nodes and disease nodes. The therapeutic relationship
between a target drug ri and disease dj is represented by each
element Aij ∈{0, 1} in the matrix. If drug ri and disease dj are

associated, then Aij = 1; otherwise, Aij = 0. Using the validated
drug−disease relationships matrix A M N× and the zero
matrices Or M M× and Od N N× , we can construct the
heterogeneous graph , ,r d

rd
rd= { }, where the sets of

drug nodes and disease nodes are represented by r and d,
while rd represents the set of edges between them. The
adjacency matrix corresponding to rd can be expressed as

A
O A

A O
rd

r

d
M N M N

T
( ) ( )

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
= + × +

(3)

Multidependency Graph Learning. For the constructed
multidependency graphs, we first initialize the node-specific
embedding matrices Xr

M d0 × and Xd
N d0 × by the Xavier

initializer.27 For drug−disease dependency graph rd, we
concatenate Xr0 and Xd0 to obtain Xrd0 = Xr0 ∥Xd0 as its input. For
the homogeneous dependency graph r and d, a self-gating
module28 are respectively trained to derive drug dependency-
aware embedding Xrr0 and disease dependency-aware embedding
Xdd0 from the initial node-specific embedding. Then, Xrr0 and Xdd0

are used as the inputs of r and d. Specifically, the embedding
Xrr0 and Xdd0 are calculated as follows:

X X X W b

X X X W b

( )

( )

rr r r g g

dd d d g g

0 0 0

0 0 0

r r

d d

l
m
oooo
n
oooo

= +

= +
(4)

where X M d
rr
0 × and X N d

dd
0 × , and σ(·) represents the

sigmoid activation function, and ⊙ denotes element-wise
multiplication. Wg dr

and Wg
d d

d

× are transformations, while

bgdr
and bg

d1
d

× for bias. With skip connections, the self-gating
mechanism enables the representations Xrr0 and Xdd0 to
incorporate dependency from drug−drug and disease−disease
domains while retaining common semantic information from
the initial features Xr0 and Xd0.
Subsequently, we employ multilayer graph convolutional

networks (GCNs) to learn embeddings from graph r , d, and
rd. To broaden the information perception of each dependency

graph and facilitate information interaction, we configure
LightGCN29 as the graph message-passing paradigm to fuse
and update the embeddings across layers of these graphs. The
GCNs are applied as the encoder for the three dependency
graphs:

X D A D X

X D A D X

X D A D X

rr
l

r
r

r rr
l

dd
l

d
d

d dd
l

rd
l

rd
rd

rd rd
l

1/2 1/2 1

1/2 1/2 1

1/2 1/2 1

l

m
oooooooo

n

oooooooo

=

=

= (5)

where X l M d
rr

× and X l N d
dd

× represent the latent
features of drug and disease nodes, respectively. The joint
node embeddings at the lth iteration are denoted by
X l M N d

rd
( )+ × . The input for the 0th layer is Xrr0 , Xdd0 , and

Xrd0 . The iteration is 1 ≤ l ≤ L, where L represents the maximum
number of GCN layers. Similar to soft meta-path design,30

information in each layer is aggregated from multihop
neighbors. Through multiple iterations of message propagation,
high-order embeddings retain multihop connected heteroge-
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neous semantics. Inspired by XSimGCL,31 contrastive recom-
mendation models can be enhanced by fine-tuning the
uniformity of learned representations within a specific range.
After each convolution operation, noise perturbation is added to
the joint embeddings of drugs and diseases to achieve effective
representation-level augmentation:

X Xrd
l

rd
l= + (6)

where Δ′ represents the noise vector and ∥Δ∥2 = ϵ, with ϵ being
a small constant. Furthermore, node embeddings are updated
through the information fusion process:

X X X

X X X

X X X

( )/2

( )/2

rr
l

rr
l

r
l

dd
l

dd
l

d
l

rd
l

rr
l

dd
l

l

m

oooooooo

n

oooooooo

= +

= +

= (7)

where (Xrl , Xdl ) = split(Xrdl′). These fused representations are fed
into the next layer of the encoder.
By capturing the outputs at each layer of the multidependency

GCNs and aggregating heterogeneous and homogeneous
information, we calculate the overall representation related to
drugs and diseases as follows:

X

X

X

mean X
X

X

mean X
X

X

mean X
X

X

rr rr
l

L
rr
l

rr
l

dd dd
l

L
dd
l

dd
l

rd rd
l

L
rd
l

rd
l

0

1

0

1

0

1

3

l

m

ooooooooooooooooo

n

ooooooooooooooooo

i
k
jjjjjj

y
{
zzzzzz

i
k
jjjjjj

y
{
zzzzzz

i
k
jjjjjj

y
{
zzzzzz

= +

= +

= +

=

=

= (8)

where Xrr0 , Xdd0 , and Xrd0 are initial embeddings, which are
incorporated by skip connections. Meanwhile, we normalized
the output of each GCN layer. Notably, during the multi-
dependency GCN process, the continuous sharing and
integration of information between homogeneous and hetero-
geneous views may gradually weaken the discriminative power
of node representations. To address this, we deliberately discard
the outputs of the last three layers when calculating the final joint
node embeddings on the heterogeneous view, better supporting
the subsequent cross-view contrastive learning.
Finally, the node embeddings on the drug−drug and disease−

disease views are enhanced to optimize the embeddings encoded
on the drug−disease view. The fusion process is as follows:

X X X

X X X

(1 )

(1 )

r r rr

d d dd

l
m
ooo
n
ooo

= +

= + (9)

where (Xr, Xd) = split(Xrd) and 0 ≤ ω ≤ 1 is a hyperparameter
that controls the weight between the embeddings of the drug−
disease view and the drug−drug (or disease−disease) view.
Here, the embeddings of the homogeneous views, Xrr and Xdd,
are incorporated for better optimization. The ultimate
embeddings Xr

M d× for drugs and Xd
N d× correspond-

ing to diseases are utilized for the drug repurposing task.
Cross-View and Cross-Layer Contrastive Learning. To

address the challenge of label sparsity, we integrate contrastive
learning into MDGCN to enhance its representation learning

capacity. Contrastive learning not only facilitates the model to
capture meaningful patterns from sparsely labeled data but also
enables more robust representation alignment across heteroge-
neous and homogeneous views. Specifically, we adopt two
contrastive learning strategies for MDGCN, including cross-
view and cross-layer contrastive learning. These strategies are
introduced to leverage multiview embeddings and hierarchical
information flow, enabling the model to effectively balance low-
order and high-order feature dependencies.

Cross-View Contrastive Learning. The heterogeneous view
of drugs and diseases reflects their complex dependencies
through the association network, while the homogeneous views
focus more on the internal similarities within a single group. The
cross-view contrastive learning32 paradigm is based on the two
sets of learned embeddings for drugs and diseases to align the
embeddings of these two views and obtain more robust
representations:

log
exp(sim(x , x )/ )

exp(sim(x , x )/ )

log
exp(sim(x , x )/ )

exp(sim(x , x )/ )

r

r rr

r r rr

d

d dd

d d dd

view cl

view cl

r

r r

d

d d

l

m

ooooooooo

n

ooooooooo

=

=
(10)

where xr, x d
rr are respectively embeddings from Xr, Xrr and

xd, x d
dd are embeddings from Xd, Xdd. Additionally, sim(·)

denotes the similarity function. In this work, cosine similarity is
employed as the measure of similarity. τ represents the
temperature coefficient, which is capable of automatically
identifying difficult negative instances. xrr′ or xdd′ denotes the
embedding of the negative sample whose index (r′ or d′) differs
from r or d, i.e., an unrelated drug or disease node from
homogeneous views.
Finally, the complete cross-view contrastive loss is

r dview cl view cl view clr d
= + (11)

where αr and αd are hyperparameters used to adjust the loss
weights. With the assistance of self-supervised signals, the
homogeneous view contributes side information to enhance the
accuracy of drug−disease interactionmodeling. view cl achieves
minimization by bringing closer positive instance pairs and
separating negative ones, enabling the model to generate more
discriminative embeddings for the drug−disease interaction
prediction.

Cross-Layer Contrastive Learning. As indicated in ref, 33
contrastive learning achieves optimal performance when the
mutual information between correlated views is maintained at a
balanced level. In cross-view contrastive learning, the mutual
information between two views of the same node tends to be
significantly high as both embeddings encapsulate information
from L-hop neighbors. And information fusion is applied at each
layer of the encoder; the contrastive effectiveness may be
insufficient. According to the prior studies,31,34 we aim to further
contrast the embeddings from different layers, enabling stronger
information flow between layers and preventing node
embeddings from becoming overly similar. Specifically, the
output of the last layer for the drug−disease view is aligned with
the input of the first layer of the encoder:
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log
exp(sim(x , x )/ )

exp(sim(x , x )/ )

log
exp(sim(x , x )/ )

exp(sim(x , x )/ )

r

r
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r

r r
L

r

d

d
L

d

d d
L

d

layer cl

0

0

layer cl

0

0

r

r r

d

d d

l

m

oooooooooo

n

oooooooooo

=

=
(12)

where (xrL, xdL) = split(xrdL′) and xrdL′ is the embedding from XrdL′.
And the complete cross-layer contrastive objective function is as
follows:

layer cl layer cl layer clr d
= + (13)

Formally, Xr0 and Xd0 retain some original low-order features,
while XrdL′ can be regarded as higher-order context embeddings,
which is a combination of embeddings within the subgraphs
containing neighbors from multiple hops. Through cross-layer
comparison, the similarity of positive instances between the
context embeddings XrL or XdL and the corresponding initial
embeddings Xr0 or Xd0 is maximized, while negative instances are
effectively distinguished. Benefiting from this, the model can
better coordinate the high-order semantics with the low-order
features to improve the information alignment effect across
multiple views.
Prediction and Optimization.Our predictor uses an inner

product method to calculate the likelihood between the target
drug and disease. The label is obtained through an activation
function: ỹij = σ(x̃rdi

T x̃ddj
), where x̃r di

corresponds to the drug-
specific representation of ri derived from the final fused matrix
X̃r, while x̃d dj

denotes the disease-specific representation of dj
from the X̃d. And σ(·) represents the sigmoid activation function.
As our principal loss function, we utilize binary cross-entropy

loss:

y y y y(1 )log(1 ) log( )
i j

ij ij ij ijmain
,

= +
(14)

where yij represents the actual label for the target nodes
corresponding to ri and dj. By weighting the main loss and
contrastive loss, the final loss is formulated as

( )main view cl layer cl= + + (15)

where α is used to adjust the weights of the contrastive loss and
main loss and β is for balancing the contribution of the cross-
layer contrastive loss in the overall objective.
Data Sets. In recent studies,12,14,25 four representative data

sets, including Fdata set,35 Cdata set,36 LRSSL,37 and Ldata
set,38 are widely used in drug−disease association prediction
tasks. MDGCN’s effectiveness is evaluated across these four
benchmark data sets. Specifically, the Fdata set comprises 313
diseases from the OMIM39 database and 593 drugs from the
DrugBank40 database, along with 1933 known associations
between them. A total of 2532 validated drug−disease
relationships are included in the Cdata set, in addition to 409
medications that are listed in DrugBank and 663 disorders
collected from the OMIM repository. Similarly, LRSSL contains
763 drugs and 681 diseases, with 3051 validated relationships
between drugs and diseases. The Ldata set is sourced from the
CTD41 data set, comprising 18416 known drug−disease
associations involving 269 drugs and 598 diseases. This large-
scale interaction network enables rigorous evaluation of
MDGCN’s scalability on densely connected graphs. To
construct the homogeneous graph for each benchmark data

set, drug similarity features are derived from chemical
substructures, and disease phenotype similarities are based on
semantic features. A summary of these data sets is presented in
Table 1. To further assess MDGCN’s adaptability to complex

biological networks, we introduce the DB-KEGG data set from
MGATRx,42 which encompasses various biological relation-
ships, as shown in Table 2. The drug and disease similarity
matrices used as input for MDGCN are generated by averaging
Jaccard similarity matrices computed from multiple relationship
adjacency matrices.

Evaluation Metrics. We make use of two metrics that are
frequently employed, namely, AUROC and AUPRC, in order to
evaluate the effectiveness of various approaches related to drug
repositioning. Specifically, the receiver operating characteristic,
often known as the ROC, is a probability curve that makes a
comparison between the true positive rate (TPR) and the false
positive rate (FPR).43 The area under the ROC curve is denoted
by the acronym AUROC. AUPRC is obtained by calculating the
area under the precision-recall curve, which measures the
relationship between precision and recall at various thresholds.44

The higher AUROC and AUPRC scores suggest that the
performance is better. When there is a class imbalance problem,
AUPRC may be more informative than AUROC. The F1-score
is also computed on the DB-KEGG data set, using the optimal
threshold determined by the elbow method on the AUPR curve.

TPR(or recall)
TP

TP FN
=

+ (16)

FPR
FP

FP TN
=

+ (17)

precision
TP

TP FP
=

+ (18)

F1 2
precision recall
precision recall

= × ×
+ (19)

where TP and TN are, respectively, the number of correctly
predicted known and unknown drug−disease associations and
FP and FN are the number of incorrectly predicted known and
unknown drug−disease associations, respectively.

Table 1. Summary of Four Benchmark Data Sets with
Sparsity Analysis

data sets Fdata set Cdata set LRSSL Ldata set

number of drugs 593 663 763 269
number of diseases 313 409 681 598
identified sssociations 1933 2532 3051 18416
sparsity 0.0104 0.0093 0.0059 0.1145

Table 2. Statistics of the DB-KEGG Data Set

edge types number of edges size

drug−disease 8957 (4008, 2958)
disease−targets 27,245 (2958, 8722)
drug−targets 11,146 (4008, 8722)
drug−substructures 422,742 (4008, 881)
drug−sideeffects 297,999 (4008, 11744)
drug−MeSH 35,277 (4008, 2124)
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■ RESULTS
Parameter Setting.Within the framework of PyTorch, the

MDGCN paradigm is put into action. The parameter is

optimized using the Adam. Following empirical adjustments,
we specified 4096 as the batch size across the four benchmark
data sets and 20,000 for DB-KEGG. Furthermore, the values of
our model’s customized hyperparameters for various data sets
are provided in Table 3. The exhaustive tuning procedure for the
dimensionality d of learned embeddings and the quantity k of
proximate neighbors on representative data sets is delineated in
Hyperparameter Analysis Section. In the experiments, baseline
models are configured to the default values, as specified in the
literature.
Baselines. To assess the effectiveness of MDGCN, a

comparative analysis is conducted between MDGCN and
seven advanced approaches across four gold-standard data
sets. Included in these baseline approaches are two models
(iDrug, BNNR) that rely on matrix completion, two models
(DRWBNCF, DRHGCN) utilizing graph convolutional net-
works, and three models (HCCF, DRGCL, AutoDR) based on
the GCNs and contrastive learning. The detailed descriptions of
these baselines are as follows:

• iDrug45 develops a unified model to obtain cross-domain
representations for drug-related prediction.

• BNNR11 is a bounded nuclear norm regularization
technique based on matrix completion to predict new
drug indications.

• DRWBNCF17 adopts neural collaborative filtering
techniques to infer new potential drugs for diseases
based on neighborhood interaction.

• DRHGCN18 learns dual-domain embeddings of nodes by
applying graph convolution operations.

• HCCF46 introduces a hypergraph-based self-supervised
framework for capturing local and global collaborative
relations through contrastive learning.

• DRGCL24 employs contrastive learning through topology
and semantic graphs for drug repositioning.

• AutoDR25 is a collaborative learning framework that
incorporates neighbor interaction levels into GNN’s
message-passing process.

To further evaluate the adaptability and performance of
MDGCN on multirelational biomedical networks, we bench-
mark it against four representative models, including MedGCN,
MGATRx, SR-HGN, and HAGNN. Specifically, MedGCN47

leverages a multiview graph convolutional network on the
complex associations between multiple medical entities for
medication recommendation. MGATRx42 utilizes a multiview
graph attention mechanism to aggregate relevant neighbors for
drug repositioning. SR-HGN48 proposes node-level and type-

Table 3. Hyperparameter Setting of MDGCN

hyperparameter
Fdata
set

Cdata
set LRSSL

Ldata
set DB-KEGG

e: the training epoch 110 60 50 20 10
η: the decay factor 0.99 0.99 0.99 0.99 0.99
τ: the temperature
coefficient

0.5 0.5 0.5 0.5 0.5

ϵ: a small constant to
control noise

0.3 0.6 0.2 0.3 0.2

ω: the coefficient for
embedding fusion

0.1 0.3 0.2 0.5 0.2

lr: the rate of learning 0.05 0.055 0.055 0.1 0.1
αr: the weight of view clr 0.068 0.068 0.08 0.064 0.08
αd: the weight of

view cld
0.088 0.085 0.09 0.085 0.09

α: the weight of all
contrastive loss

0.09 0.09 0.075 0.025 0.09

β: the weight of layer cl 0.01 0.01 0.01 0.01 0.01
d: the dimensionality of
embeddings

128 512 256 256 128

k: the quantity of
proximate neighbors

3 4 7 6 7

Table 4. Comparison of MDGCN and Seven Other Models Using 10-Fold Cross-Validation

data sets iDrug BNNR DRWBNCF DRHGCN HCCF DRGCL AutoDR MDGCN

AUPRC
Fdata set 0.167 ± 0.027 0.328 ± 0.029 0.484 ± 0.027 0.490 ± 0.041 0.483 ± 0.036 0.583 ± 0.042 0.570 ± 0.041 0.602 ± 0.041
Cdata set 0.250 ± 0.027 0.431 ± 0.020 0.559 ± 0.021 0.580 ± 0.035 0.562 ± 0.031 0.671 ± 0.034 0.631 ± 0.043 0.694 ± 0.028
LRSSL 0.070 ± 0.009 0.226 ± 0.021 0.349 ± 0.034 0.384 ± 0.022 0.364 ± 0.031 0.468 ± 0.056 0.401 ± 0.043 0.501 ± 0.044
Ldata set 0.086 ± 0.004 0.142 ± 0.007 0.419 ± 0.006 0.498 ± 0.012 0.527 ± 0.008 0.566 ± 0.009 0.530 ± 0.014 0.573 ± 0.009
average 0.143 0.282 0.453 0.488 0.484 0.572 0.533 0.593
AUROC
Fdata set 0.905 ± 0.019 0.937 ± 0.010 0.923 ± 0.013 0.948 ± 0.011 0.900 ± 0.010 0.955 ± 0.008 0.951 ± 0.005 0.961 ± 0.010
Cdata set 0.926 ± 0.010 0.952 ± 0.010 0.941 ± 0.011 0.964 ± 0.005 0.914 ± 0.012 0.969 ± 0.004 0.963 ± 0.009 0.972 ± 0.006
LRSSL 0.900 ± 0.008 0.922 ± 0.012 0.935 ± 0.011 0.961 ± 0.006 0.885 ± 0.011 0.953 ± 0.009 0.948 ± 0.010 0.965 ± 0.008
Ldata set 0.838 ± 0.005 0.866 ± 0.004 0.824 ± 0.005 0.851 ± 0.007 0.864 ± 0.003 0.879 ± 0.003 0.864 ± 0.004 0.881 ± 0.003
average 0.892 0.919 0.906 0.931 0.891 0.939 0.932 0.945

Figure 3. Comparison of MDGCN and other models using a 10-fold
cross-validation on DB-KEGG.
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level aggregation to hierarchically learn node representations in
heterogeneous information networks. And HAGNN49 intro-
duces the hybrid aggregation based on the fused meta-path
graph to exploit the semantic information for link prediction.
Performance Comparison with Baselines on Cross-

Validation. To ensure that the performance of MDGCN is
appropriately evaluated, we carry out a 10-fold cross-validation
assessment. Following previous studies,18,19 positive and
negative instances are first shuffled independently and then
divided into ten subsets, respectively. The test set consists of one
positive subset and the corresponding negative subset for each

fold, while the training set consists of all of the remaining
subsets. Additionally, to mitigate potential data biases in cross-
validation, MDGCN and the comparison models are evaluated
over 10 repetitions. The results on the four benchmark data sets
(Fdata set, Cdata set, LRSSL, Ldata set) are presented in Table
4.
We observe that MDGCN consistently outperforms all of the

compared models across the four data sets in the 10-fold cross-
validation, achieving superior performance in both AUPRC and
AUROC metrics. Notably, AUPRC is particularly valuable for
imbalanced data sets, as it directly reflects the model’s ability to

Figure 4. Performance of MDGCN on Fdata set using 10-fold cross-validation.

Figure 5. Performance of MDGCN on the Cdata set using 10-fold cross-validation.

Figure 6. Performance of MDGCN on LRSSL using 10-fold cross-validation.
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distinguish positive samples from negatives without being
influenced by the true negative rate. MDGCN achieves the
best AUPRC performance with an average value of 0.593,
outperforming the second-best model by 1.9, 2.3, 3.3, and 0.7%
across the Fdata set, Cdata set, LRSSL, and Ldata set data sets,
respectively. However, when the overall model performance is
assessed, AUROC serves as a more widely adopted and reliable
metric. By simultaneously considering sensitivity and specificity,
AUROC evaluates the global ranking of both positive and
negative samples, providing a measure of the model’s overall
discriminative ability. A higher AUROC indicates the stronger
capability of MDGCN in identifying positive samples while
reducing the misclassification rate of negative ones. Specifically,
MDGCN achieves the highest average AUROC value of 0.945,
surpassing the suboptimal model DRGCL by 0.6% and
outperforming AutoDR and DRHGCN by 1.3 and 1.4%,
respectively, highlighting its superior overall performance.
Although the improvement in AUROC is relatively modest,
MDGCNdemonstrates a substantial advantage in AUPRC, with
an average increase of 2.1, 6, and 10.5% compared to DRGCL,
AutoDR, and DRHGCN, indicating its remarkable ability in
identifying the minority class. The consistent improvement
across both AUROC and AUPRC confirms the effectiveness and
reliability of MDGCN. Compared to other GCN-based models
such as DRHGCN and DRWBNCF, MDGCN clearly outper-
forms them due to its effective integration of multiple
dependency graphs and contrastive learning for learning robust
node embeddings. Moreover, when compared with other

models that also incorporate contrastive learning, such as
HCCF, DRGCL, and AutoDR, MDGCN achieves superior
performance through its dual-strategy approach, which
combines both cross-view and cross-layer contrastive learning.
To further evaluate the adaptability of MDGCN on the

multirelational data set, we also evaluate MDGCN on the DB-
KEGG data set. As shown in Figure 3, MDGCN achieves the
highest scores across all metrics. Compared to the suboptimal
model, MDGCN achieves an improvement of 0.9% in AUPRC,
0.9% in AUROC, and 0.1% in F1-score, demonstrating its
adaptivity and performance to effectively capture complex
dependencies in multirelational graphs. Figures 4, 5, 6, 7 and 8
illustrate the average ROC and PR curves obtained through 10-
fold cross-validation of MDGCN across various data sets,
showcasing the model’s consistent performance over multiple
folds. These results strongly demonstrate the superiority and
robustness of MDGCN for drug repositioning tasks.
Hyperparameter Analysis. In the proposed framework, we

leverage multilayer graph convolutional networks to derive
informative embeddings of drugs and diseases based on
multidependency graphs. Initially, to prevent overly smooth
features resulting from dense similarity matrices, the drug and
disease similarity matrices are transformed into sparse KNN
graphs. Subsequently, multilayer GCNs are applied to learn
embeddings. To identify the optimal hyperparameters of
MDGCN, we assess the impact of embedding dimensions and
the quantity of proximate neighbors across four representative
data sets.

Figure 7. Performance of MDGCN on Ldata set using 10-fold cross-validation.

Figure 8. Performance of MDGCN on DB-KEGG using 10-fold cross-validation.
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Dimensionality of Learned Embeddings. We experiment
with various dimensionalities, specifically {32, 64, 128, 256, 512,
and 1024}, across four data sets. As illustrated in Figure 9(a,b),
increasing the embedding dimensionality initially improves
model performance. However, beyond a certain threshold, the
performance begins to decline. The optimal dimensionality
differs across data sets, suggesting that the dimensionality should
be tailored to the data sparsity and structural characteristics. The
best performance is achieved respectively with the dimension-
ality of 128, 512, 256, and 256 for the Fdata set, the Cdata set,
LRSSL, and the Ldata set data sets. This indicates that data sets
with lower sparsity may benefit from larger embedding
dimensions to capture more comprehensive features.

Quantity of Proximate Neighbors. In light of the fact that the
design of the KNN graph is essential for determining the degree
of similarity between nodes, we examine how the quantity of
proximate neighbors influences the model’s ability to make
accurate predictions. The quantity of proximate neighbors is
between one and ten. Increasing the quantity of proximate
neighbors effectively enriches the information on the target
node, as seen in Figure 9(c,d). The quality of the target node and
model performance are lowered as the quantity of neighbors
increases because low-similarity node information is introduced,
which may be irrelevant or behave as noise. An ideal neighbor
selection greatly improves model performance according to
experimental findings. For the Fdata set and Cdata set, optimal
performance is achieved with 3 and 4 neighbors, respectively.
Due to the inherent data sparsity, the LRSSL data set tends to
benefit from more neighbors, particularly 7, while the Ldata set
achieves the best performance with 6 neighbors.
Time Complexity Analysis.The computational complexity

of each training iteration arises from two components. (1)
Multidependency graph learning, where three LightGCN
models perform message passing on different graphs. Each
convolution layer involves normalizing adjacency matrices,
contributing complexities of O( )rr| | , O( )dd| | , and O( )rd| | ,
respectively. As described in eq 5, the core computation involves
multiplying sparse adjacency matrix A with dense feature matrix
X, resulting in complexities ofO d( )rr| | ,O d( )dd| | , andO d( )rd| | .
Since rd rr| | | | and rd dd| | | |, the overall complexity is
dominated by O L d( )rd| | . (2) Contrastive learning, where
pairwise similarity computations within each batch require

Figure 9. (a, b) Performance ofMDGCNwith different dimensionalities of learned embedding. (c, d) Performance ofMDGCNwith varying numbers
of KNN neighbors.

Figure 10. Running time of MDGCN per-epoch training across data
sets with varying scales.
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O(B2d) and B represents the batch size. Consequently, the
overall contrastive learning complexity per epoch is given by

( )O B d
B

MN 2× , which simplifies toO(MNBd). Since B≫ L and
MN rd| |, the final overall training complexity can be further
approximated as O(MNBd), primarily influenced by batch size,
drug nodes, disease nodes, and feature dimensionality. Figure 10

illustrates the average per-epoch training time of MDGCN
across data sets with varying scales, indicating that the overall
training time is primarily dominated by contrastive learning,
particularly for data sets with a larger number of nodes such as
DB-KEGG.
Ablation Study. On the four benchmark data sets, we

compare MDGCN with its six variants to investigate the
contributions of different model components on prediction
performance.

• w/o rr: MDGCN without homogeneous graph r .

• w/o dd: MDGCN without homogeneous graph d.
• w/o view-cl:MDGCNwithout cross-view contrastive loss

view cl.
• w/o layer-cl: MDGCN without cross-layer contrastive

loss layer cl.

• w/o noise: MDGCN without noise perturbation after
each convolution operation.

• w full layers: MDGCN with full layers when calculating
the final joint node embeddings Xrd.

Table 5 presents the performance of MDGCN and its six
variants. MDGCN consistently outperforms all ablation
variants, affirming the essential role of each component. The
removal of either homogeneous graph r or d leads to
significant performance degradation, demonstrating the im-
portance of leveraging side information derived from drug−drug
and disease−disease relationships. Both contrastive learning and
the exclusion of the last three layers’ outputs significantly affect
the performance, while the impact of the noise perturbation is
relatively minor. Specifically, removing cross-view contrastive
learning causes substantial declines in AUROC and AUPRC,
emphasizing its role in optimizing node embeddings by aligning
similar nodes across views and distinguishing unrelated ones.
Furthermore, eliminating cross-layer contrastive learning results
in a noticeable performance degradation, highlighting the role of
hierarchical contrastive constraints in strengthening the
representational capacity of the multilayer network structure.
The impact of noise perturbation is limited, yet it still
contributes to mitigating overfitting. The full-layer case
underperforms the MDGCN model, underscoring the impor-
tance of the synergistic integration of all components for optimal
performance.

Table 5. Performance Comparison of MDGCN and Its Six Variants

variants Fdata set Cdata set LRSSL Ldata set

AUPRC
w/o dd 0.599 ± 0.038 0.655 ± 0.019 0.485 ± 0.044 0.483 ± 0.009
w/o rr 0.568 ± 0.042 0.636 ± 0.039 0.465 ± 0.039 0.499 ± 0.010

w/o view-cl 0.538 ± 0.042 0.619 ± 0.035 0.414 ± 0.049 0.573 ± 0.009
w/o layer-cl 0.584 ± 0.042 0.693 ± 0.030 0.493 ± 0.048 0.573 ± 0.009
w/o noise 0.607 ± 0.045 0.694 ± 0.029 0.502 ± 0.045 0.571 ± 0.010
w full layers 0.595 ± 0.040 0.688 ± 0.028 0.493 ± 0.046 0.572 ± 0.008
MDGCN 0.602 ± 0.041 0.694 ± 0.028 0.501 ± 0.044 0.573 ± 0.009
AUROC
w/o dd 0.915 ± 0.015 0.931 ± 0.014 0.882 ± 0.019 0.842 ± 0.004
w/o rr 0.879 ± 0.019 0.908 ± 0.016 0.902 ± 0.012 0.852 ± 0.004

w/o view-cl 0.898 ± 0.013 0.923 ± 0.010 0.876 ± 0.010 0.880 ± 0.003
w/o layer-cl 0.942 ± 0.010 0.960 ± 0.007 0.944 ± 0.010 0.881 ± 0.003
w/o noise 0.959 ± 0.011 0.969 ± 0.007 0.963 ± 0.009 0.880 ± 0.003
w full layers 0.944 ± 0.010 0.958 ± 0.007 0.945 ± 0.008 0.880 ± 0.003
MDGCN 0.961 ± 0.010 0.972 ± 0.006 0.965 ± 0.008 0.881 ± 0.003

Table 6. Top Ten Potential Drugs Predicted by MDGCN for
PD (OMIM: 168600)

rank
DrugBank

IDs
candidate
medicines sources

1 DB00989 rivastigmine CTD, DrugBank, DC, PubChem,
ClinicalTrials

2 DB00190 carbidopa CTD, DrugBank, DC, PubChem,
ClinicalTrials

3 DB00268 ropinirole CTD, DrugBank, DC, PubChem,
ClinicalTrials

4 DB00413 pramipexole CTD, DrugBank, DC, PubChem,
ClinicalTrials

5 DB00387 procyclidine CTD, DrugBank, DC, PubChem
6 DB01186 pergolide CTD, DrugBank, DC, PubChem,

ClinicalTrials
7 DB00245 benzatropine CTD, DrugBank, DC, PubChem
8 DB00747 scopolamine CTD
9 DB00810 biperiden CTD, DrugBank, DC, PubChem
10 DB00376 trihexyphenidyl CTD, DrugBank, DC, PubChem

Table 7. Top Ten Potential Drugs Predicted by MDGCN for
AD (OMIM: 104300)

rank
DrugBank

IDs
candidate
medicines sources

1 DB00989 rivastigmine CTD, DrugBank, DC, PubChem,
ClinicalTrials

2 DB00163 vitamin E CTD, ClinicalTrials
3 DB00313 valproic acid CTD, ClinicalTrials
4 DB00181 baclofen CTD, ClinicalTrials
5 DB04844 tetrabenazine Unconfirmed
6 DB01043 memantine CTD, DrugBank, DC, PubChem,

ClinicalTrials
7 DB00843 donepezil CTD, DrugBank, DC, PubChem,

ClinicalTrials
8 DB00190 carbidopa Unconfirmed
9 DB00413 pramipexole CTD, ClinicalTrials
10 DB00382 tacrine CTD, DrugBank, DC, PubChem
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Case Studies.Two case studies on Parkinson’s disease (PD)
and Alzheimer’s disease (AD) are conducted to further validate
the proposed model’s reliability and efficacy in predicting their
candidate drugs. We systematically eliminate the labels
pertaining to PD and AD from all established drug−disease
relationships in the Fdata set, utilizing the removed associations
as the test set and the remainder as the training set. Upon
forecasting all absent drug−disease connections, we arrange the
outcomes in descending order and concentrate on the top 10
medications identified for PD and AD. To ensure the accuracy of
these predictions, we consult trustworthy sources such as CTD,
DrugBank, DC, PubChem, and ClinicalTrials. Tables 6 and 7
report ten leading candidate medications for PD and AD as
predicted by MDGCN, respectively.
All ten drugs for PD have been validated by diverse sources,

indicating a 100% success rate. Previous research has shown that
levodopa−carbidopa intestinal gel (LCIG) is widely utilized for
the treatment of advanced Parkinson’s disease (PD), especially
in patients suffering from significant motor fluctuations and
dyskinesia.50,51 Furthermore, subcutaneous scopolamine is
documented as an alternate therapy for a terminal cancer
patient experiencing severe tremors, who was incapable of
ingesting oral drugs for PD.52

Alzheimer’s disease (AD) represents the most prevalent type
of dementia and is a neurodegenerative condition that
progressively deteriorates. Our findings indicate that 8 out of
10 drugs, representing an 80% success rate, have been validated
by various forms of evidence. For example, the study53 confirms
memantine’s safety and effectiveness in relieving AD symptoms.
According to previous research,54 donepezil is a combined
acetylcholinesterase inhibitor that helps individuals with mild to
severe Alzheimer’s disease with their cognitive abilities and
overall clinical performance. Although tetrabenazine and
carbidopa have not yet been confirmed for the treatment of
AD, recent studies are actively exploring their potential
therapeutic effects.55,56 These case studies demonstrate that
the predictions of MDGCN have practical significance and
scientific basis, providing valuable references for further drug
development and disease treatment.

■ CONCLUSIONS
This study introduces a novel drug repositioning method,
termed MDGCN, which is based on multidependency graph
convolutional networks and contrastive learning. MDGCN
innovatively constructs multidependency graphs using drug and
disease similarity matrices along with the drug−disease
associationmatrix. By employingmultilayer graph convolutional
networks, it embeds node features and propagates node-specific
side information across diverse graphs. Meanwhile, MDGCN
introduces two different contrastive learning strategies to
enhance its representation learning capacity. Specifically,
cross-view contrastive learning is to align node embeddings in
different dependency graphs, and cross-layer contrastive
learning further coordinates high-order semantics and low-
order features. Extensive experiments are conducted on four
benchmark data sets to thoroughly assess the model’s perform-
ance. Additionally, experiments on a multirelational data set
further validate the model’s adaptability in handling complex
heterogeneous graphs. The results indicate that MDGCN
exhibits a superior performance. The contributions of each
module added to the framework are further confirmed by
ablation experiments. Furthermore, case studies demonstrate
that this framework possesses significant predictive capabilities,

rendering it an effective instrument for forecasting drug−disease
relationships. In future work, we expect to construct dependency
graphs based on density to address the issue that the KNN
algorithm is less effective for outliers or noisy data.
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