
Knowledge-Based Systems 320 (2025) 113661

A
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Dynamic graph representation learning via edge temporal states modeling

and structure-reinforced transformer
Shengxiang Hu a , Guobing Zou a ,∗, Song Yang a , Shiyi Lin a , Yanglan Gan b ,
Bofeng Zhang c
a School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
b School of Computer Science and Technology, Donghua University, Shanghai, 201620, China
c School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai, 201209, China

A R T I C L E I N F O

Keywords:
Dynamic graph
Graph representation learning
Edge temporal states
Structure-reinforced graph transformer

 A B S T R A C T

The rapid proliferation of time-evolving networks has rendered dynamic graph representation learning
increasingly crucial for real-world applications, as existing approaches that combine recurrent neural networks
(RNNs) with graph neural networks (GNNs) face two critical limitations: insufficient modeling of edge temporal
states and their impact on node feature evolution, along with the inherent over-smoothing problem of GNNs
that impedes effective extraction of global structural features. To address these challenges, we introduce the
Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework that advances dynamic graph
representation learning through two key innovations. First, it introduces a principled approach to explicitly
model edge temporal states using differentiated edge types and weights derived from sequential snapshot
analysis, effectively integrating temporal dynamics into the graph’s topological structure. Second, it designs a
structure-reinforced graph transformer that leverages a recurrent learning paradigm to capture comprehensive
node representations, simultaneously encoding both local connectivity patterns and global structural features
while preserving temporal evolution characteristics. Comprehensive experiments on four real-world datasets
demonstrate RSGT’s superior performance in discrete dynamic graph representation learning, consistently
outperforming existing methods in dynamic link prediction tasks.
1. Introduction

Graphs serve as powerful abstractions for modeling complex sys-
tems across diverse domains including traffic flow forecasting [1,2],
recommender systems [3–5] and stock prediction [6], wherein entities
and their interactions naturally evolve over time through emergence
or dissolution of connections. These temporal variations necessitate
the conceptualization of dynamic graphs, which can be categorized as
either discrete [7,8] or continuous [9,10] based on their temporal mod-
eling approach. Learning the representation of these dynamic graphs is
crucial as it encapsulates both interaction mechanisms and evolution-
ary patterns, thereby facilitating system behavior understanding and
prediction.

While static graph representation learning [11,12] primarily focuses
on fixed topological features, dynamic graph representation learning
confronts the dual challenge of preserving evolving structures while
capturing temporal dynamics, significantly increasing model design
complexity. This necessitates architectures capable of simultaneously
modeling spatial dependencies and temporal evolution patterns while

∗ Corresponding author.
E-mail address: gbzou@shu.edu.cn (G. Zou).

maintaining structural integrity at each time step. Our study concen-
trates on discrete dynamic graph representation learning due to its
widespread applicability [7,8] and efficacy in capturing significant
state changes in real-world systems where graph structures typically
evolve through distinct, observable transitions rather than continuous
changes.

A discrete dynamic graph is modeled as a sequence of ordered static
snapshots across discrete time intervals. The predominant approach
combines Graph Neural Networks (GNNs) with Recurrent Neural Net-
works (RNNs) [13,14] to capture both structural and temporal patterns.
However, this approach faces fundamental challenges in maintaining
the balance between structural and temporal feature learning [7],
often leading to suboptimal representation quality. Recent research
has explored more sophisticated architectures to address these limita-
tions [15,16], particularly focusing on better handling of long-range
dependencies and improved inductive learning capabilities. Emerg-
ing research trends focus on developing methods that can effectively
https://doi.org/10.1016/j.knosys.2025.113661
Received 1 October 2024; Received in revised form 9 April 2025; Accepted 25 Apr
vailable online 10 May 2025
950-7051/© 2025 Elsevier B.V. All rights are reserved, including those for text and
il 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
https://orcid.org/0000-0002-1510-2478
https://orcid.org/0000-0002-7865-8158
https://orcid.org/0009-0003-3896-7049
https://orcid.org/0000-0001-8355-0259
https://orcid.org/0000-0001-5931-9006
mailto:gbzou@shu.edu.cn
https://doi.org/10.1016/j.knosys.2025.113661
https://doi.org/10.1016/j.knosys.2025.113661

S. Hu et al. Knowledge-Based Systems 320 (2025) 113661
balance the modeling of both short-term and long-term temporal de-
pendencies [7], while also addressing the challenges of scalability and
computational efficiency in large-scale dynamic graphs [17]. Contem-
porary advancements aim to yield more comprehensive and nuanced
dynamic graph representations that simultaneously capture localized
interactions and global evolutionary patterns.

However, existing approaches exhibit limitations that constrain
their effectiveness in dynamic graph representation learning. Firstly,
current methods often overlook the dynamic influence of edge temporal
states on node features. The temporal evolution of edges — their
persistence, emergence, or disappearance — significantly impacts node
characteristics, yet many approaches fail to explicitly model these
dynamics [18,19]. Secondly, while recent research [20,21] has begun
to explore transformer architectures to address the over-smoothing
problem in GNNs [22,23], challenges remain in effectively integrating
graph structural information with complex temporal dependencies.
Moreover, existing RNN-based approaches typically process temporal
and structural information in a segregated manner, first learning node
representations within static snapshots and then modeling their tem-
poral evolution. This artificial separation leads to the loss of valuable
temporal information during neighborhood aggregation, as the tem-
poral evolution of neighboring nodes is not directly considered in
the feature aggregation process. Consequently, there is a need for an
approach that can maintain an integrated view of temporal–structural
dependencies while effectively preserving node distinctiveness.

To address these limitations, we propose a novel framework for
dynamic graph representation learning, termed Recurrent Structure-
reinforced Graph Transformer (RSGT). At the core of RSGT lies an in-
novative graph transformation technique that converts temporal snap-
shots into weighted multi-relation graphs, wherein edge temporal states
are explicitly encoded through distinct edge types and weights, ef-
fectively capturing inter-snapshot variations. Building upon this trans-
formed representation, we introduce a structure-reinforced graph
Transformer with a novel structure-aware attention mechanism that
intrinsically integrates topological information into the attention com-
putation process. This architectural enhancement enables simultaneous
modeling of both intricate graph structures and temporal dynam-
ics, while selectively emphasizing significant historical patterns and
structural relationships encoded in edge attributes. Through a recur-
rent learning process, our framework iteratively refines node repre-
sentations by integrating both temporal and structural information,
effectively capturing the complex evolution patterns in dynamic graphs.

Our extensive empirical evaluations on dynamic link prediction
tasks across four real-world datasets demonstrate RSGT’s superior per-
formance in dynamic graph representation learning, highlighting its
potential for dynamic graph analysis. The key contributions of this
research can be summarized as follows:

• We propose RSGT, a novel recurrent representation learning
framework that transforms temporal graph snapshots into
weighted multi-relational difference graphs, effectively capturing
edge temporal states and their integration with topological struc-
tures to comprehensively represent dynamic graph evolution.

• We design a structure-reinforced graph transformer that con-
currently extracts local–global topological features and temporal
dynamics, mitigating the over-smoothing problem while enhanc-
ing the model’s capacity to capture complex temporal–structural
dependencies.

• Extensive experiments on real-world datasets demonstrate RSGT’s
superior performance in dynamic link prediction tasks, validating
its effectiveness in capturing intricate dynamic patterns and its
potential for advancing dynamic graph analysis applications.

The remainder of this paper is organized as follows: Section 2
provides preliminaries and problem formulations. Section 3 details the
proposed RSGT framework. Experimental results are presented in Sec-
tion 4. Related work is reviewed in Section 5, followed by conclusions
in Section 6.
2
2. Problem formulation

Here, we establish a formal mathematical framework for dynamic
graph representation learning through a series of definitions that form
the theoretical foundation of our approach.

Definition 1 (Dynamic Graph). A discrete dynamic graph, denoted as
G, is an ordered sequence of static graphs represented as {G1,… , G𝑡}.
Here, G𝑡 = ⟨𝑉𝑡, 𝐸𝑡⟩ corresponds to a snapshot of the dynamic graph G
at time slice 𝑡, where 𝑉𝑡 is the set of nodes, 𝐸𝑡 is the set of edges. An
edge 𝑒𝑡𝑖𝑗 ∈ 𝐸𝑡 denotes a link between nodes 𝑣𝑖, 𝑣𝑗 at discrete time point
𝑡.

The temporal evolution of a dynamic graph is manifested primarily
through changes in its edge structure. While the dynamic graph cap-
tures the overall structure at each time step, it is crucial to understand
how individual edges evolve over time. This leads us to the concept of
edge temporal states:

Definition 2 (Edge Temporal States). The edge temporal states, denoted
as 𝑆𝑡, characterize the evolutionary patterns of edges across temporal
transitions in the graph. For each edge 𝑒𝑡𝑖𝑗 ∈ 𝐸𝑡, its temporal state
𝑠𝑡𝑖𝑗 ∈ 𝑆𝑡 is defined as a tuple 𝑠𝑡𝑖𝑗 = ⟨𝑡𝑝𝑡𝑖𝑗 , 𝜔

𝑡
𝑖𝑗⟩. Here, 𝑡𝑝𝑡𝑖𝑗 represents the

current state of the edge, which can be categorized as persistent (the
edge exists at both 𝑡 − 1 and 𝑡), emerging (the edge appears at 𝑡 but
did not exist at 𝑡 − 1), or disappearing (the edge existed at 𝑡 − 1 but no
longer exists at 𝑡). The second component, 𝜔𝑡

𝑖𝑗 , quantifies the temporal
persistence of the current state, measured by the number of consecutive
time slices during which the edge has maintained its present state.

While dynamic graphs and edge temporal states provide a frame-
work for describing evolving systems, effectively analyzing these sys-
tems requires learning compact representations that capture both struc-
tural and temporal information. This leads us to the task of dynamic
graph representation learning:

Definition 3 (Dynamic Graph Representation Learning). Dynamic graph
representation learning involves constructing a mapping function that
projects the high-dimensional dynamic graph data into a low-
dimensional representation 𝐇𝑡 ∈ ℜ|𝑉𝑡|×𝑑 (𝑑 ≪ |𝑉𝑡|) by utilizing
a succession of snapshots {G1,… , G𝑡} and their corresponding edge
temporal states {𝑆1,… , 𝑆𝑡} up to time slice 𝑡. The 𝑖th row of 𝐇𝑡,
denoted as 𝐡𝑡𝑖, represents the derived representation of node 𝑣𝑖 at time
slice 𝑡, simultaneously preserving both the network topology and the
evolutionary trajectory of the node. A generalized learning framework
can be formulated as:
𝐇𝑡 = 𝑔(𝑓 (G𝑡, 𝑆𝑡,𝐗|𝛩𝑓), 𝐈𝑡−1|𝛩𝑔) (1)

where 𝐗 denotes the initial node features or embedding matrix, 𝐈𝑡−1
represents the most recent latent temporal state, 𝑓 functions as a
feature extraction mechanism that captures the intrinsic structural
and temporal characteristics, while 𝑔 serves as a sequence model for
discerning evolving patterns. 𝛩𝑓 and 𝛩𝑔 are the learnable parameters
of 𝑓 and 𝑔 respectively.

The effectiveness of node representations learned through this pro-
cess is crucial for various graph-oriented tasks [10,24,25]. Among
these applications, dynamic link prediction serves as a particularly
rigorous benchmark for evaluating the quality of temporal–structural
representations:

Definition 4 (Dynamic Link Prediction). Given a series of snapshots
{G1,… , G𝑡} up to time slice 𝑡, the dynamic link prediction task entails
estimating the probability of existence for a candidate edge 𝑒𝑡+1𝑖𝑗 in the
upcoming snapshot G𝑡+1 at time slice 𝑡+ 1. This can be formulated as:
𝑝𝑡+1𝑖𝑗 = 𝜏(G𝑡+1|G1,… , G𝑡, 𝑆1,… , 𝑆𝑡;𝛩𝜏) (2)

where 𝑝𝑡+1𝑖𝑗 represents the predicted probability that 𝑒𝑖𝑗 ∈ 𝐸𝑡+1, and
𝜏 denotes the predictive model that transforms the historical graph
sequence into probabilistic edge forecasts, parameterized by 𝛩 .
𝜏

S. Hu et al. Knowledge-Based Systems 320 (2025) 113661
Fig. 1. Overall framework of the proposed Recurrent Structure-reinforced Graph Transformer (RSGT). (a) Edge Temporal State Modeling of Dynamic Graph: transforming each
graph snapshot into a weighted multi-relation graph to model the edge temporal states. (b) Recurrent Temporal Node Feature Extraction: capturing both graph topology and
evolving dynamics through a recurrent learning paradigm with the structure-reinforced graph transformer.
3. Approach

Fig. 1 illustrates the architecture of our proposed Recurrent
Structure-reinforced Graph Transformer (RSGT), which comprises two
complementary modules designed to address the challenges of dynamic
graph representation learning. The first module, Edge Temporal State
Modeling of Dynamic Graph, systematically transforms each original
graph snapshot into a weighted multi-relation difference graph by
assigning diverse edge types and weights based on their evolutionary
patterns between consecutive time slices. It explicitly delineates short-
term dynamics through multi-relational edge type modeling while
capturing long-term dependencies via an edge weight temporal updat-
ing mechanism. The second module, Recurrent Temporal Node Feature
Extraction, introduces a structure-reinforced graph transformer that
simultaneously integrates topological dependencies and temporal edge
states across the weighted multi-relation difference graph. Through a
recurrent learning paradigm, this transformer iteratively refines node
representations, effectively encoding both fine-grained local structures
and comprehensive global dependencies. These two modules work in
tandem to learn comprehensive and time-aware node representations,
enabling RSGT to effectively model the complex dynamics of evolving
graphs. In the subsequent sections, we delve deeper into the intricacies
of each module.

3.1. Edge temporal state modeling of dynamic graph

In a dynamic graph G, the feature of a focal node 𝑣𝑖 can be concep-
tualized as a reflection of its interactions with other nodes 𝑣𝑗 ∈ (𝑁ℎ

𝑖)
𝑡

that it directly or indirectly engages with [26]. Here, (𝑁ℎ
𝑖)

𝑡 signifies the
ℎ-hop neighborhood of 𝑣𝑖 at time slice 𝑡, representing all nodes that can
be reached from 𝑣𝑖 within ℎ steps at time 𝑡.

Social network theory, as observed in [18,19], suggests that the
strength of relationships between nodes predominantly depends on his-
torical interaction patterns, particularly their frequency and duration.
This relationship strength subsequently influences future interactions,
playing a critical role in the formation and evolution of the graph.
However, capturing these dynamic relationships presents significant
challenges for node representation learning. Node interactions demon-
strate various temporal behaviors — persistence, emergence, or dis-
appearance — across consecutive snapshots, resulting in continuous
transformations of edge temporal states. They are characterized by
dual aspects: short-term dynamics (immediate state transitions) and
long-term dynamics (cumulative influence on inter-node correlation
3
strength). Understanding the evolution of G thus hinges on accurately
modeling how distinct edge temporal states impact node features across
different time slices.

To address the challenges and capture such multi-faceted dynamics,
we propose explicitly modeling edge temporal states, which provides
essential heuristic information to downstream feature extraction pro-
cesses. Specifically, we develop a heuristic edge temporal state model-
ing method that transforms each G𝑡 ∈ G into a weighted multi-relation
difference graph Ĝ𝑡 based on the differences between adjacent graph
snapshots. It uses different edge types and edge weights to explicitly
model the temporal states of edges, capturing both short-term and
long-term dynamics. Formally, we define this graph as follows:

Definition 5 (Weighted Multi-relation Difference Graph). A weighted
multi-relation difference graph Ĝ𝑡 = ⟨𝑉𝑡, 𝐸̂𝑡, 𝑆𝑡⟩ at time slice 𝑡 is defined
as a graph comprising a set of nodes 𝑉𝑡, a set of edges 𝐸̂𝑡 encompassing
connections from both current and previous time slices, and a set of
edge temporal states 𝑆𝑡 = {⟨𝑡𝑝𝑡𝑖𝑗 , 𝜔

𝑡
𝑖𝑗⟩}, where 𝑡𝑝𝑡𝑖𝑗 represents the edge

type capturing short-term dynamics, and 𝜔𝑡
𝑖𝑗 denotes the edge weight

reflecting long-term dynamics. Both 𝑡𝑝𝑡𝑖𝑗 and 𝜔𝑡
𝑖𝑗 are modeled based

on the differences between adjacent time slice snapshots G𝑡−1 and G𝑡,
thereby capturing the temporal dynamics of the graph structure.

For implementation, we employ two key mechanisms. First, as de-
picted in the left section of Fig. 1, multi-relational edge type modeling
utilizes a Markov process to assign a unique type 𝑡𝑝𝑡𝑖𝑗 to each edge 𝑒𝑡𝑖𝑗 ∈
𝐸̂𝑡. The value of 𝑡𝑝 is drawn from the set {e,p,d}, where e denotes
an emerging edge, p symbolizes a persisting edge, and d signifies an
edge that has disappeared from the previous snapshot. This process is
mathematically expressed as follows:

𝐸̂𝑡 = 𝐸𝑡−1 ∪ 𝐸𝑡 (3)

𝑡𝑝𝑡𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

e if 𝑒𝑡𝑖𝑗 ∈ 𝐸𝑡 − 𝐸𝑡−1

p if 𝑒𝑡𝑖𝑗 ∈ 𝐸𝑡 ∩ 𝐸𝑡−1

d if 𝑒𝑡𝑖𝑗 ∈ 𝐸𝑡−1 − 𝐸𝑡

(4)

where Eq. (3) combines edges from consecutive time slices, while
Eq. (4) categorizes these edges based on their temporal behavior.
This categorization allows us to explicitly model the dynamic nature
of edges, including those that have disappeared, which is crucial for
understanding the evolving graph structure. In Ĝ𝑡, we provisionally
reconstruct vanished edges between consecutive snapshots, recogniz-
ing that edge disappearance does not necessarily indicate immediate

S. Hu et al. Knowledge-Based Systems 320 (2025) 113661
cessation of inter-node influence, but rather may trigger diverse effects
on the connected nodes.

Second, edge weight temporal updating captures the long-term dy-
namics by assigning and updating weights to edges based on their his-
torical persistence and strength. To quantify the duration of edges and
their impact on node relationships, we introduce a temporal counter 𝑘
that tracks how long an edge has persisted in the graph. For each edge
𝑒𝑖𝑗 , we maintain and update its duration counter 𝑘𝑡𝑖𝑗 at each time slice
𝑡 according to the edge’s temporal state:

𝑘𝑡𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑡𝑝𝑡𝑖𝑗 = e

𝑘𝑡−1𝑖𝑗 + 1 if 𝑡𝑝𝑡𝑖𝑗 = p

𝑘𝑡−1𝑖𝑗 if 𝑡𝑝𝑡𝑖𝑗 = d

(5)

For emerging edges (𝑡𝑝𝑡𝑖𝑗 = e), we initialize 𝑘𝑡𝑖𝑗 to 1, representing the
start of a new interaction. For persisting edges (𝑡𝑝𝑡𝑖𝑗 = p), we increment
the previous counter value by 1, reflecting the continued existence of
the relationship. For disappeared edges (𝑡𝑝𝑡𝑖𝑗 = d), we maintain the
last known duration value, preserving the historical information of the
relationship strength.

Based on the edge duration counter 𝑘, we assign and update the
strength coefficient 𝜔 for each edge:

𝜔𝑡
𝑖𝑗 =

{

𝛼𝑘𝛽 if 𝑡𝑝𝑡𝑖𝑗 = e or p
𝜔𝑡−1
𝑖𝑗 if 𝑡𝑝𝑡𝑖𝑗 = d

(6)

where the parameter 𝛼 (typically set between 0 and 1) controls the base
weight scale, while 𝛽 (typically greater than 0) determines how quickly
the edge weight grows with duration. For emerging and persisting
edges, the weight is computed as a function of their duration, reflecting
the intuition that longer-lasting relationships tend to be stronger. For
disappeared edges, we maintain their previous weight to preserve the
historical relationship strength information, which may be relevant for
future interactions.

Consequently, the dynamic graph Ĝ𝑡 conserves the original topology
while concurrently modeling the temporal state of the edge through
complementary edge types and weights, thus providing a compre-
hensive representation that captures both immediate transitions and
cumulative effects of node interactions across time slices.

3.2. Recurrent temporal node feature extraction

The Recurrent Temporal Node Feature Extraction process is the key
component of our RSGT model, designed to address the challenge of
learning comprehensive node representations in dynamic graphs. Our
framework adopts an integrated perspective that fundamentally differs
from traditional approaches by directly incorporating the temporal tra-
jectories of neighboring nodes during feature aggregation. This design
enables node features to inherently encode both structural context
and temporal evolution patterns, leading to more effective capture
of dynamic graph characteristics through the natural consideration
of how neighboring nodes’ temporal evolution influences the cen-
tral node’s representation. This process proposes a structure-reinforced
graph transformer (SGT) to progressively refine node representations
along the temporal dimension, integrating global semantic correlations,
topological dependencies, and edge temporal states across consecutive
snapshots.

Fig. 1 illustrates the process of recurrent temporal node feature ex-
traction over the constructed weighted multi-relation difference graph
Ĝ𝑡. For a sequence of graph snapshots {Ĝ1, Ĝ2,… , Ĝ𝑇 }, the SGT updates
node representations through the following process:
𝐇̂𝑡 = F𝑔𝑙 (Ĝ𝑡,𝐇

𝑡−1), 𝑡 = 1, 2,… , 𝑇 (7)

𝐇𝑡 = 𝐇̂𝑡 +𝐇𝑡−1 (8)

where 𝐇𝑡 ∈ ℜ|𝑉 |×𝑑 is the node feature matrix at time slice 𝑡, F𝑔𝑙 (⋅) de-
notes an 𝑙-layer SGT that extracts temporal–structural features, |𝑉 | de-
notes the maximum node count across all time slices, and 𝑑 represents
4
the dimensionality of the temporal node representation. Eq. (8) imple-
ments a residual connection, enabling the model to preserve historical
information while incorporating new temporal–structural patterns.

For the initial time slice (𝑡 = 1), we initialize node representations
using 𝐇0 = 𝐗 ∈ ℜ|𝑉 |×𝑑 , where each row represents the initial feature
vector of a particular node. It can be derived from various sources,
including node identifiers embedded in a 𝑑-dimensional space, node at-
tribute embeddings encoding domain-specific features, and pre-trained
embeddings that leverage existing knowledge.

Next we will detail the core operations of our SGT, as shown in
Fig. 2, including global semantic encoding, structure encoding, and
temporal feature extraction.

3.2.1. Global semantic encoding
The global semantic encoding module, illustrated in the upper left

portion of Fig. 2, captures semantic relationships between nodes inde-
pendent of their topological proximity. This global perspective enables
the model to identify potential interactions between distant nodes that
may become relevant as the graph evolves.

We employ self-attention to compute pairwise semantic correla-
tions, following the standard mechanism [27]. This approach creates
a complete semantic graph that complements the existing topological
structure. The module takes 𝐇𝑡−1 as input and processes it as follows:

𝐀𝑡 =
𝐐𝑡(𝐊𝑡)𝑇
√

𝑑𝐾
=

𝐇𝑡−1𝐖𝑡
𝑄(𝐇

𝑡−1𝐖𝑡
𝐾)

𝑇

√

𝑑𝐾
(9)

𝐕𝑡 = 𝐇𝑡−1𝐖𝑡
𝑉 (10)

where 𝐖𝑡
𝑄,𝐖

𝑡
𝐾 ∈ ℜ𝑑×𝑑′ , and 𝐖𝑡

𝑉 ∈ ℜ𝑑×𝑑 are trainable projection
matrices. 𝐐𝑡, 𝐊𝑡, and 𝐕𝑡 represent the query, key, and value matrices,
respectively. The attention matrix 𝐀𝑡 ∈ ℜ|𝑉 |×|𝑉 | quantifies semantic
correlations between node pairs, where 𝑎𝑡𝑖𝑗 ∈ 𝐀𝑡 represents the cor-
relation between nodes 𝑣𝑖 and 𝑣𝑗 . For simplicity, we assume 𝑑′ = 𝑑
and consider single-head self-attention, though extension to multi-head
attention is straightforward.

3.2.2. Structure encoding
While global semantic encoding captures overall node relationships,

graph topology provides essential structural context for node represen-
tation learning [20,21]. Our structure encoding module, depicted in
the bottom right of Fig. 2, enriches the transformer architecture with
both local and global structural features, enhancing its ability to model
complex graph dynamics.

The selection of appropriate topological features is crucial for effec-
tively characterizing nodes within the graph structure. Drawing from
fundamental network analysis principles [28,29], we incorporate node
degree centrality and path-based measures, which effectively capture
node connectivity patterns and structural roles. Specifically, node de-
gree centrality reflects a node’s immediate influence in the network,
while the shortest path length between nodes indicates their structural
proximity and potential for information exchange. Thus, for each node
pair ⟨𝑣𝑖, 𝑣𝑗⟩, we construct a topological attribute vector 𝐚𝐭𝐭𝐫𝑠:

𝐚𝐭𝐭𝐫𝑡(𝑖𝑗)𝑠 = [𝑠𝑑𝑜𝑢𝑡, 𝑡𝑑𝑖𝑛, 𝑠𝑝𝑑] (11)

where 𝑠𝑑𝑜𝑢𝑡, 𝑡𝑑𝑖𝑛, and 𝑠𝑝𝑑 denote the out-degree of the source node, the
in-degree of the target node, and the shortest path length between the
nodes, respectively. Then we employ a transformation mechanism that
projects this attribute vector into a higher-dimensional space, followed
by a normalization step to ensure stable training dynamics:
𝐫𝑡(𝑖𝑗)𝑠 = LayerNorm(𝐖𝑠𝐚𝐭𝐭𝐫𝑡(𝑖𝑗)𝑠 + 𝐛𝑠) (12)

where 𝐖𝑠 ∈ ℜ𝑑𝑒×3 and 𝐛𝑠 ∈ ℜ𝑑𝑒 are learnable parameters, and
LayerNorm denotes layer normalization. The resulting representation
𝐫𝑡 ∈ ℜ𝑑𝑒 encapsulates the complex topological relationships between
(𝑖𝑗)𝑠

S. Hu et al. Knowledge-Based Systems 320 (2025) 113661
Fig. 2. Structure-reinforced Graph Transformer for temporal node feature extraction. (a) Semantic Encoding Module: capturing global semantic correlations between nodes. (b)
Structure Encoding Module: extracting topological dependencies from the weighted multi-relation difference graph, incorporating both original graph structure and temporal
information. (c) Temporal Feature Extraction Module: fusing semantic and enhanced topological correlations to generate time-aware node representations.
nodes, facilitating the model’s ability to discern intricate structural
patterns within the dynamic graph.

To additionally represent edge temporal states, we construct a path
feature matrix 𝐀𝐓𝐓𝐑𝑡

(𝑖𝑗)𝑝 ∈ ℜ2×𝑠𝑝𝑑 for each node pair, encoding both
topological relationships and temporal evolution patterns:

𝐀𝐓𝐓𝐑𝑡
(𝑖𝑗)𝑝 = [𝐚𝐭𝐭𝐫𝑡𝑒; 𝐚𝐭𝐭𝐫

𝑡
𝑤] (13)

where 𝐚𝐭𝐭𝐫𝑡𝑒 represents the edge types along the path p𝑡
𝑣𝑖→𝑣𝑗

 at time 𝑡,
and 𝐚𝐭𝐭𝐫𝑡𝑤 represents the corresponding edge weights.

We transform these discrete attributes into continuous representa-
tions through embedding layers:

𝐚𝐭𝐭𝐫𝑡𝑒 ↦ 𝐑𝑡
𝑒 ∈ ℜ𝑠𝑝𝑑×𝑑𝑒 (14)

𝐚𝐭𝐭𝐫𝑡𝑤 ↦ 𝐑𝑡
𝑤 ∈ ℜ𝑠𝑝𝑑×𝑑𝑒 (15)

where 𝑑𝑒 is the embedding dimension. These embeddings enable rich
representations of temporal–structural patterns.

To capture the varying impact of different edge types in temporal
evolution, we integrate edge type features with their corresponding
weights through the Hadamard product:

𝐑𝑡
𝑝 = 𝐑𝑡

𝑒 ⊙ 𝐑𝑡
𝑤 (16)

where ⊙ denotes the Hadamard product.
To preserve positional information of edges along paths, we incor-

porate positional encoding following the transformer design [27]:

𝐏𝐄𝑝𝑜𝑠,2𝑖 = 𝑠𝑖𝑛(
𝑝𝑜𝑠

100002𝑖∕𝑑𝑒
) (17)

𝐏𝐄𝑝𝑜𝑠,2𝑖+1 = 𝑐𝑜𝑠(
𝑝𝑜𝑠

100002𝑖∕𝑑𝑒
) (18)

𝐑̂𝑡
𝑝 = 𝐑𝑡

𝑝 + 𝐏𝐄 (19)

where 𝑝𝑜𝑠 is the position of an edge in the path and 𝑖 is the column
index.

We then apply a one-dimensional convolutional layer to reduce
the dimensionality of 𝐑𝑡

𝑝, resulting in the final path feature 𝐫̂𝑡(𝑖𝑗)𝑝 ∈

ℜ𝑑𝑒 . The complete structural representation 𝐫𝑡 ∈ ℜ2𝑑𝑒 is formed by
𝑖𝑗

5
concatenating the topology and path features:
𝐫𝑡𝑖𝑗 = 𝐫𝑡(𝑖𝑗)𝑠 ⊕ 𝐫̂𝑡(𝑖𝑗)𝑝 (20)

where ⊕ denotes vector concatenation.

3.2.3. Temporal feature extraction
To effectively integrate structural information into the transformer

framework, we propose a structure-aware attention mechanism, as
shown in the upper right section of Fig. 2. This mechanism adapts the
semantic attention scores 𝑎𝑡𝑖𝑗 ∈ 𝐀𝑡 based on structural features 𝐫𝑡𝑖𝑗 :

𝜆𝑡𝑖𝑗 = 𝐖𝑠(𝐫𝑡𝑖𝑗)
𝑇 (21)

𝜎𝑡𝑖𝑗 = 𝐖𝜎 (𝐫𝑡𝑖𝑗)
𝑇 (22)

𝑎̂𝑡𝑖𝑗 = 𝜆𝑡𝑖𝑗𝑎
𝑡
𝑖𝑗 + 𝜎𝑡𝑖𝑗 (23)

𝐇̂𝑡 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐀̂𝑡)𝐕 (24)

where 𝜆𝑡𝑖𝑗 and 𝜎𝑡𝑖𝑗 are scale and offset coefficients, respectively. 𝑎̂𝑖𝑗 ∈ 𝐀̂𝑡

represents the structure-enhanced attention score. The final output 𝐇̂𝑡 ∈
ℜ|𝑉 |×𝑑 thus integrates semantic correlations with temporal–structural
patterns.

From a representation learning perspective, our model follows
the GNN paradigm of neighborhood feature aggregation. However,
RSGT addresses the over-smoothing challenge that typically arises
when nodes share overlapping neighborhoods. Our structure-aware
attention mechanism generates distinct aggregation weights by con-
sidering unique structural relationships (path lengths, edge weights,
and types) and semantic correlations between each central node and
its neighbors. Combined with residual connections (Eq. (8)), this ap-
proach preserves node distinctiveness while capturing comprehensive
temporal–structural dependencies.

3.3. Model training

We train our model using dynamic link prediction as the optimiza-
tion objective. For a candidate edge 𝑒𝑡+1𝑖𝑗 , we compute its feature 𝐡𝑡+1𝑒𝑖𝑗

∈
ℜ𝑑 as the absolute difference of node features: |𝐡𝑡 − 𝐡𝑡 |, following
𝑖 𝑗

S. Hu et al. Knowledge-Based Systems 320 (2025) 113661
Table 1
Statistics of the four datasets.
 Dataset # of Nodes # of Edges Train/Test splits
 twi-Tennis 1000 40,839 100/20
 CollegeMsg 1899 59,835 25/63
 cit-HepTh 7577 51,315 77/1
 sx-MathOF 24,818 506,550 64/15

the widely-adopted practice in graph representation learning [10,30],
which provides an efficient and effective measure of node similarity.
The edge features are then classified through a neural network:
𝑝̂𝑡+1𝑖𝑗 = 𝜎(𝐖𝑜𝐡𝑡+1𝑒𝑖𝑗

+ 𝐛𝑜) (25)

where 𝐖𝑜 and 𝐛𝑜 are trainable weights, and 𝑝̂𝑡+1𝑖𝑗 denotes the predicted
probability of edge existence.

The model is then optimized using cross-entropy loss with L2 regu-
larization:

𝐽𝑖𝑗 = −𝑝𝑡+1𝑖𝑗 𝑙𝑜𝑔𝑝̂𝑡+1𝑖𝑗 − (1 − 𝑝𝑡+1𝑖𝑗)𝑙𝑜𝑔(1 − 𝑝̂𝑡+1𝑖𝑗) (26)

𝐽 = E(
∑

𝑖,𝑗∈𝑉
𝐽𝑖𝑗) + 𝜆‖𝛩‖

2
2 (27)

where 𝛩 encompasses all trainable parameters, and 𝜆 controls the
regularization strength.

We employ the AdamW optimizer [31] with mini-batch training,
which effectively handles the structural complexity and temporal dy-
namics of graph data while maintaining computational efficiency.

3.4. Complexity analysis

The computational complexity of RSGT stems from two main com-
ponents. The Edge Temporal State Modeling has a complexity of 𝑂(|𝐸|)
for processing |𝐸| edges, including edge type assignment and temporal
weight updating. The Recurrent Temporal Node Feature Extraction op-
erates on ℎ-hop neighborhoods 𝑁ℎ

𝑖 for each node 𝑣𝑖, involving semantic
encoding 𝑂(|𝑁ℎ

𝑖 |𝑑), structure encoding 𝑂(|𝑁ℎ
𝑖 | log |𝑁

ℎ
𝑖 | + |𝑁ℎ

𝑖 |𝑑), and
attention computation 𝑂(|𝑁ℎ

𝑖 |
2𝑑) for 𝑑-dimensional features. Consider-

ing all nodes and 𝑙 layers, the complexity for a single time step becomes
𝑂(𝑙

∑

|𝑉 |

𝑖=1(|𝑁
ℎ
𝑖 | log |𝑁

ℎ
𝑖 | + |𝑁ℎ

𝑖 |
2𝑑)).

In dense graphs or applications requiring global structural aware-
ness, the ℎ-hop neighborhood size |𝑁ℎ

𝑖 | can approach |𝑉 |, significantly
impacting computational efficiency. This challenge can be addressed
through neighborhood sampling, where a fixed number 𝑠 ≪ |𝑉 | of
nodes is selected. Such optimization would reduce the overall com-
plexity to 𝑂(𝑇 𝑙|𝑉 |𝑠(𝑠 + log 𝑠 + 𝑑) + 𝑇 |𝐸|𝑑) across 𝑇 time steps. The
practical efficiency can be further enhanced by the sparsity of real-
world graphs (|𝐸| ≪ |𝑉 |

2) and the ability to configure the sampling
size 𝑠 based on specific computational constraints while maintaining
model effectiveness.

4. Experiments

In order to rigorously evaluate the effectiveness of the proposed
RSGT model, we conduct comprehensive experiments across diverse
dynamic graph scenarios. These experiments are performed using two
NVIDIA GTX 1080Ti GPUs, an Intel(R) Xeon(R) Gold 6130 processor
(2.60 GHz), and 192 GB of RAM. The RSGT model’s components are
implemented using Python 3.7.1 and PyTorch 1.4.0.

4.1. Datasets

To evaluate RSGT’s performance across diverse network environ-
ments, we selected four representative real-world dynamic graph
datasets: twi-Tennis, CollegeMsg, cit-HepTh, and sx-MathOF. These
datasets encompass different application domains and exhibit distinct
6
characteristics in terms of temporal dynamics, node and edge densities,
and interaction types.

The twi-Tennis dataset [32] captures temporal interactions in social
media during tennis tournaments, with nodes representing Twitter
accounts and edges denoting mentions. This dataset exemplifies rapidly
evolving interaction patterns. CollegeMsg [33] is derived from a univer-
sity’s online social network, where edges represent private messages
between users. The cit-HepTh dataset [34] models scientific citation
networks, with nodes as papers and edges as citations, capturing the
cumulative nature of knowledge diffusion. The sx-MathOF dataset [35]
represents interactions on the Math Overflow forum, demonstrating
heterogeneous temporal patterns with varying degrees of persistence.

Each dataset is divided into multiple snapshots, capturing the tem-
poral evolution of the networks. Table 1 summarizes the key statistics
and train/test split ratios.

4.2. Competing methods

To assess the efficacy of our proposed RSGT, we compare it with
thirteen state-of-the-art methods spanning three categories of graph
representation learning approaches. In the category of static graph em-
bedding, DeepWalk [11] pioneered the random walk-based approach
by treating walk sequences as sentences for skip-gram [36] train-
ing, while GraphSAGE [30] introduced an inductive framework for
neighborhood feature aggregation. For discrete-time dynamic graphs,
EvolveGCN [7] employs RNN to evolve GCN parameters, and ROLAND
[8] provides a framework for adapting static GNNs to dynamic scenar-
ios through hierarchical state updates. The continuous-time dynamic
graph methods represent more recent advances: CTDNE [9] extends
random walks to continuous dynamics, TGAT [37] introduces temporal
attention for interaction modeling, CAW [38] leverages causal anony-
mous walks for temporal pattern extraction, TREND [10] incorporates
Hawkes processes [39] for evolutionary modeling, DyGFormer [40]
employs transformer architecture with neighbor co-occurrence encod-
ing, R-GSAGE [41] captures embedding trajectories through differential
equations, ConTIG [17] integrates recurrent structures with Graph-
SAGE, and TimeSGN [42] presents a decoupled temporal–structural
processing framework for scalable embedding generation.

4.3. Experiment results and analyses

4.3.1. Prediction task and parameter settings
Following the experimental framework outlined in [10], we use

dynamic link prediction [43] to evaluate the efficacy of the proposed
RSGT model. For rigorous evaluation, we divide the snapshots from
various time slices of dynamic graph G into training and test datasets.
The training dataset D𝑡𝑟 encompasses all snapshots prior to time 𝑡𝑟,
serving as the historical context for model learning. The test dataset
D𝑡𝑒 consists of snapshots after time 𝑡𝑟, used to assess the model’s predic-
tive capability. To comprehensively evaluate our model’s capability in
learning both short-term and long-term historical information, as well
as its performance in predicting links over varying time horizons, we
employ different train–test split ratios for each dataset, as shown in
Table 1. This diverse set of split ratios allows us to simulate various
real-world scenarios, from rapidly evolving social networks to more
stable citation networks, thereby providing a thorough assessment of
RSGT’s adaptability and predictive power across different temporal
scales.

Based on empirical analysis of information density and computa-
tional efficiency, we set the node representation dimension 𝑑 to 32 for
the twi-Tennis, CollegeMsg, and sx-MathOF datasets, and 16 for the cit-
HepTh dataset. During the testing phase, we generate temporal node
representations using the trained model, which are then input into a
logistic regression classifier to predict edge existence probabilities for
each snapshot. For each test snapshot in D𝑡𝑒, we maintain a balanced
positive–negative sample ratio of 1:1, with 80% of edges used for

S. Hu et al. Knowledge-Based Systems 320 (2025) 113661
Table 2
Performance comparisons of dynamic link prediction among competing baselines on twi-Tennis and ColledgeMsg.
 twi-Tennis CollegeMsg

 Accuracy ↑ Recall ↑ Precision ↑ F1 ↑ Accuracy ↑ Recall ↑ Precision ↑ F1 ↑
 DeepWalk 61.96 ± 1.27 61.05 ± 2.83 61.51 ± 2.62 61.27 ± 2.81 66.54 ± 5.36 67.57 ± 5.81 68.22 ± 5.95 67.86 ± 5.86
 GraphSAGE 62.76 ± 1.76 62.02 ± 1.63 62.50 ± 1.78 62.26 ± 1.66 58.91 ± 3.67 60.23 ± 4.15 60.57 ± 4.30 60.45 ± 4.22
 EvolveGCN 64.73 ± 0.64 63.51 ± 0.92 64.12 ± 1.01 63.80 ± 0.98 63.27 ± 4.42 65.62 ± 4.64 65.37 ± 4.81 65.44 ± 4.72
 ROLAND 68.45 ± 2.08 68.61 ± 1.74 69.03 ± 1.81 68.80 ± 1.74 69.44 ± 2.86 70.19 ± 2.58 70.53 ± 2.63 70.32 ± 2.64
 CTDNE 58.14 ± 2.67 58.33 ± 2.04 58.91 ± 2.19 58.61 ± 2.12 62.55 ± 3.67 65.34 ± 2.20 65.82 ± 2.36 65.56 ± 2.34
 TGAT 69.01 ± 1.54 69.03 ± 1.41 69.56 ± 1.56 69.24 ± 1.47 70.35 ± 2.54 71.01 ± 2.35 71.43 ± 2.46 71.20 ± 2.37
 CAW 71.35 ± 1.68 71.15 ± 1.41 72.03 ± 1.46 71.57 ± 1.42 73.04 ± 2.11 72.71 ± 1.95 73.23 ± 2.01 72.95 ± 1.98
 TREND 74.02 ± 1.78 73.83 ± 1.61 75.46 ± 1.63 74.63 ± 1.66 74.55 ± 1.95 74.33 ± 1.91 75.91 ± 2.04 75.64 ± 2.09
 DyGFormer 75.89 ± 1.52 75.67 ± 1.43 77.21 ± 1.58 76.43 ± 1.50 76.32 ± 1.78 76.11 ± 1.69 77.54 ± 1.86 76.82 ± 1.77
 R-GSAGE 74.85 ± 1.63 74.62 ± 1.55 76.18 ± 1.59 75.39 ± 1.57 75.21 ± 1.83 74.98 ± 1.75 76.43 ± 1.92 75.70 ± 1.83
 ConTIG 75.13 ± 1.59 74.91 ± 1.48 76.49 ± 1.55 75.69 ± 1.51 75.78 ± 1.81 75.54 ± 1.72 77.02 ± 1.89 76.27 ± 1.80
 TimeSGN 80.45 ± 1.62 80.12 ± 1.58 81.35 ± 1.65 80.73 ± 1.61 81.85 ± 1.42 81.52 ± 1.38 82.45 ± 1.45 81.98 ± 1.41
 RSGT 87.59 ± 0.55 87.13 ± 0.52 88.04 ± 0.67 87.55 ± 0.55 86.81 ± 0.14 86.36 ± 0.19 87.21 ± 0.21 86.70 ± 0.13
 Gains 8.87% 8.76% 8.25% 8.44% 6.06% 5.94% 5.77% 5.76%
Table 3
Performance comparisons of dynamic link prediction among competing baselines on cit-HepTh and sx-MathOF.
 cit-HepTh sx-MathOF

 Accuracy ↑ Recall ↑ Precision ↑ F1 ↑ Accuracy ↑ Recall ↑ Precision ↑ F1 ↑
 DeepWalk 51.55 ± 0.90 49.89 ± 0.92 50.89 ± 0.89 50.39 ± 0.98 66.23 ± 0.89 66.47 ± 0.94 67.81 ± 0.98 67.14 ± 1.12
 GraphSAGE 70.72 ± 1.96 70.56 ± 2.12 71.98 ± 2.04 71.27 ± 2.41 65.32 ± 1.55 65.52 ± 1.35 66.84 ± 1.69 66.18 ± 1.21
 EvolveGCN 61.57 ± 1.53 61.80 ± 1.52 63.04 ± 1.44 62.42 ± 1.54 68.35 ± 0.68 68.33 ± 0.58 69.71 ± 0.39 69.02 ± 0.35
 ROLAND 70.57 ± 1.51 70.61 ± 1.44 72.03 ± 1.28 71.32 ± 1.52 73.35 ± 0.98 72.31 ± 0.82 73.77 ± 0.69 73.04 ± 0.85
 CTDNE 49.42 ± 1.86 43.79 ± 1.98 44.67 ± 2.67 44.23 ± 2.92 60.72 ± 0.28 60.30 ± 0.39 61.52 ± 0.19 60.91 ± 0.51
 TGAT 71.42 ± 1.28 70.39 ± 1.30 71.81 ± 1.36 71.10 ± 1.34 74.15 ± 1.01 74.00 ± 0.81 75.50 ± 0.83 74.75 ± 0.79
 CAW 72.75 ± 1.19 71.78 ± 1.21 73.22 ± 1.28 72.50 ± 1.23 77.95 ± 0.77 76.89 ± 0.76 78.45 ± 0.65 77.67 ± 0.72
 TREND 80.37 ± 2.08 80.32 ± 1.97 81.94 ± 1.82 81.13 ± 1.92 79.82 ± 1.56 79.21 ± 1.27 80.81 ± 1.31 80.01 ± 1.34
 DyGFormer 81.25 ± 1.89 81.18 ± 1.82 82.73 ± 1.75 81.95 ± 1.78 80.94 ± 1.43 80.36 ± 1.21 81.89 ± 1.28 81.12 ± 1.24
 R-GSAGE 81.58 ± 1.85 81.52 ± 1.79 83.08 ± 1.71 82.29 ± 1.75 81.63 ± 1.38 81.02 ± 1.17 82.57 ± 1.23 81.79 ± 1.20
 ConTIG 82.19 ± 1.92 82.13 ± 1.85 83.72 ± 1.78 82.92 ± 1.81 81.21 ± 1.41 80.62 ± 1.19 82.16 ± 1.25 81.38 ± 1.22
 TimeSGN 83.15 ± 1.65 82.85 ± 1.58 83.95 ± 1.62 83.39 ± 1.60 83.35 ± 1.25 83.05 ± 1.18 84.15 ± 1.32 83.59 ± 1.25
 RSGT 87.20 ± 0.49 86.85 ± 0.46 87.49 ± 0.32 87.17 ± 0.40 87.91 ± 0.32 87.45 ± 0.38 88.35 ± 0.46 87.90 ± 0.42
 Gains 4.87% 4.83% 4.22% 4.53% 5.47% 5.30% 4.99% 5.16%
classifier training and 20% for testing. The scale factor 𝛼 and the
power factor 𝛽 are kept constant at 1 across all datasets. We conduct
five independent runs and report the mean and standard deviation of
classification accuracy and F1 scores.

4.3.2. Comparison with competing baselines
The experimental results for dynamic link prediction, as presented

in Tables 2 and 3, demonstrate that RSGT achieves state-of-the-art per-
formance across all evaluated datasets, with significant improvements
in both accuracy (4.22%–8.87%) and F1 scores (4.53%–8.44%). This
comprehensive evaluation validates the effectiveness of our proposed
temporal–structural modeling framework.

The experimental results reveal three critical aspects in dynamic
graph representation learning: temporal pattern characterization, struc-
tural information preservation, and temporal–structural feature integra-
tion. The substantial performance gap between static methods (Deep-
Walk, GraphSAGE) and dynamic approaches empirically validates the
necessity of explicit temporal modeling, with static methods exhibiting
15%–20% performance degradation across datasets. This limitation is
particularly evident in networks with high temporal volatility, where
static approaches fail to capture evolving neighborhood structures
and dynamic edge formation patterns. Recent dynamic graph learning
methods have shown progressive improvements through increasingly
sophisticated modeling strategies. Notably, TimeSGN achieves strong
baseline performance through its temporal state modeling and message
passing mechanism, yet its decoupled temporal–structural processing
paradigm inherently constrains the potential for integrated feature
learning. In contrast, RSGT’s unified modeling framework demon-
strates consistent performance advantages (4.22%–8.87% accuracy im-
provement), empirically validating the effectiveness of joint temporal–
structural feature learning.
7
The performance analysis across diverse graph scenarios provides
empirical validation for RSGT’s key technical innovations. In highly
dynamic social networks (twi-Tennis, CollegeMsg), RSGT’s edge tem-
poral state modeling mechanism demonstrates superior effectiveness,
achieving 8.87% and 6.06% accuracy improvements respectively over
TimeSGN. This advantage empirically validates the effectiveness of
our weighted multi-relation framework in capturing both rapid state
transitions and evolving structural patterns. For citation networks (cit-
HepTh) characterized by stable edges and strong global dependencies,
the structure-reinforced attention mechanism proves particularly effec-
tive, maintaining a 4.87% accuracy advantage through comprehensive
modeling of persistent relationships and global structural features.
The heterogeneous temporal patterns in sx-MathOF further validate
RSGT’s adaptability, with the integrated temporal–structural modeling
achieving a 5.47% accuracy improvement through effective handling
of diverse temporal dependencies.

These consistent performance improvements can be attributed to
RSGT’s architectural innovations in addressing fundamental challenges.
The weighted multi-relation framework enables fine-grained tempo-
ral pattern modeling through explicit state tracking and evolution
modeling. The structure-reinforced transformer architecture effectively
preserves both local and global structural information while capturing
temporal dependencies. This unified approach to temporal–structural
feature learning, combined with the adaptive feature aggregation mech-
anism, enables RSGT to effectively model complex graph dynamics
across diverse scenarios.

4.3.3. Computational efficiency analysis
To analyze the computational efficiency of RSGT and align with

real-world scenarios where direct learning on large-scale complete

S. Hu et al. Knowledge-Based Systems 320 (2025) 113661
Fig. 3. Computational efficiency comparison across models. The bars (left y-axis)
indicate GPU memory consumption in MB, while the line (right y-axis) shows average
computation time in milliseconds per batch.

graphs is typically infeasible, we conduct comparative analysis using
minibatch training. Fig. 3 illustrates the efficiency comparison between
RSGT and five representative baselines, evaluated with batch size 32
and neighborhood hop count 2, averaged across datasets.
Comparative Efficiency Analysis The empirical analysis reveals dis-
tinct efficiency patterns corresponding to model architectures.
Transformer-based models (RSGT and DyGFormer) demonstrate higher
resource requirements in both memory utilization and computation
time, primarily due to the quadratic complexity of self-attention mech-
anisms and the overhead of maintaining structural information in
attention matrices. Conversely, TimeSGN exhibits superior efficiency
through its decoupled temporal–structural processing paradigm, which
circumvents the computational intensity of full self-attention via spe-
cialized state updates. TGAT, CAW, and R-GSAGE show intermediate
efficiency profiles, reflecting their balanced approaches to temporal–
structural modeling.
Effectiveness-Efficiency Trade-off The results reveal an inherent
trade-off in model design. RSGT’s sophisticated architecture, while
computationally intensive, delivers consistently superior prediction
accuracy across all datasets. This exemplifies a classic effectiveness-
efficiency trade-off, where the enhanced modeling capability comes
at the cost of increased computational overhead. For applications
where prediction quality is paramount, this computational cost may
be justified by the significant performance gains.

4.4. Ablation study

To systematically evaluate the effectiveness and necessity of each
architectural component within RSGT, we performed a comprehensive
ablation study on dynamic link prediction tasks across four datasets.
The ablation experiments were designed to quantitatively assess two
fundamental aspects of our model: those related to edge temporal state
modeling and those related to graph topology learning.

4.4.1. Edge temporal state modeling
To rigorously examine the impact of our temporal modeling frame-

work, we evaluate the following variants:

• RSGT-T: Retains only edge weights without considering edge
types. This variant enables us to quantify the contribution of
short-term dynamics captured through edge type transitions.

• RSGT-W: Retains only edge types without explicit edge weights
modeling. This configuration allows us to isolate the impact
of long-term temporal dependencies modeled through weight
evolution.

• RSGT-TW: Uses the original dynamic graph directly without ex-
plicit modeling of edge temporal states or weights. This base-
line variant helps evaluate the collective impact of our temporal
modeling framework.
8
Figs. 4(a)–4(d) illustrate the performance of these variants across
all datasets. The experimental results reveal that RSGT-T and RSGT-
W perform similarly on the twi-Tennis, ColledgeMsg, and sx-MathOF
datasets, with only minor differences in their performance metrics. This
empirical observation suggests the complementary nature of edge types
and weights in capturing temporal dynamics. The full RSGT model con-
sistently outperforms these variants across all datasets, validating the
synergistic effect of combining both temporal modeling components.

A particularly noteworthy finding emerges from the cit-HepTh
dataset, where RSGT and RSGT-T demonstrate clear performance su-
periority over RSGT-W and RSGT-TW. This distinctive pattern can be
attributed to the inherent characteristics of citation networks, where
edges exhibit high temporal stability post-formation, emphasizing the
crucial role of long-term structural evolution in prediction accuracy.

4.4.2. Graph topology learning
To comprehensively assess the impact of structural information

integration, we evaluate the following variants:

• RSGT-S: This variant excludes node-pair topological attributes
(𝐚𝐭𝐭𝐫𝑡𝑠) such as degree information and path metrics.

• RSGT-P: This configuration omits path-based temporal informa-
tion (𝐀𝐓𝐓𝐑𝑡

𝑝), focusing solely on local structural features.
• RSGT-SP: This variant relies exclusively on the base self-attention
mechanism, excluding all explicit structural information integra-
tion.

The experimental results, as visualized in Figs. 4(e)–4(h), demon-
strate significant performance degradation for both RSGT-S and RSGT-P
across all datasets, with RSGT-P exhibiting more severe deterioration.
This observation empirically validates that path-based temporal fea-
tures provide more comprehensive structural dependency information
compared to local topological attributes.

As theoretically anticipated, RSGT-SP performed the worst among
all ablated models due to its reliance solely on semantic attention,
highlighting the limitations of pure transformer architectures in cap-
turing graph-specific dependencies. This further confirms the efficacy
of our structure-reinforced attention mechanism that integrates graph
topological information into the Transformer architecture.

In conclusion, RSGT outperforms all other ablation variants across
all datasets, empirically demonstrating the effectiveness of our dual-
aspect modeling approach: explicit temporal state representation
through typed and weighted edges, combined with comprehensive
structural information integration in the learning process.

4.5. Performance impact of parameters

To systematically optimize the performance of our proposed RSGT
model, we conducted a comprehensive analysis of four key hyperpa-
rameters: shortest path distance (𝑠𝑝𝑑), window size, number of en-
coding layers (𝑁𝑙𝑎𝑦𝑒𝑟), and number of attention heads (𝑁ℎ𝑒𝑎𝑑). This
analysis aims to understand the impact of each parameter on model
performance and determine their optimal values for our experiments.

Shortest Path Distance The shortest path distance (𝑠𝑝𝑑) param-
eter, which defines the maximum hop count of neighbors incorpo-
rated in node representation learning, was systematically evaluated
by varying from 1 to 9 across our experiments. Our analysis reveals
a consistent positive correlation between 𝑠𝑝𝑑 and model performance
across all datasets, with a particularly noteworthy observation being
the sustained performance improvement at higher 𝑠𝑝𝑑 values. This
finding contrasts significantly with traditional GNN models, which
typically suffer from performance degradation beyond 2–3 hops due
to over-smoothing [22]. The improvement is most pronounced in the
sx-MathOF dataset, demonstrating our model’s capacity to effectively
leverage higher-order neighborhood information while preserving node
distinctiveness. We observe performance improvements plateau after

S. Hu et al. Knowledge-Based Systems 320 (2025) 113661
Fig. 4. Performance of different ablated variations of RSGT. (a)–(d) show the impact of edge temporal state modeling, while (e)–(h) illustrate the effect of graph topology learning
across different performance metrics and datasets.
Fig. 5. Impact of key hyperparameters on RSGT performance across four datasets. The subplots show the effect of (a–b) shortest path distance (𝑠𝑝𝑑), (c–d) window size, (e–f)
number of encoding layers (𝑁𝑙𝑎𝑦𝑒𝑟), and (g–h) number of attention heads (𝑁ℎ𝑒𝑎𝑑) on model performance. The 𝑥-axis in each subplot represents the varying values of the respective
parameter, and the 𝑦-axis shows the corresponding performance metric in percentage.
𝑠𝑝𝑑 = 5 for most datasets, primarily due to the natural decay of
information relevance with distance rather than over-smoothing. This
successful utilization of higher-order neighborhood information vali-
dates the effectiveness of our structure-aware attention mechanism and
edge temporal state modeling. Based on these empirical findings and
computational considerations, we adopted 𝑠𝑝𝑑 = 5 for the twi-Tennis,
CollegeMsg, and cit-HepTh datasets, and 𝑠𝑝𝑑 = 2 for the sx-MathOF
dataset in our comparative experiments.

Window Size The window size parameter defines the number of
consecutive snapshots preceding the target time slice used for model
training. Through systematic experimentation with window sizes rang-
ing from 1 to 9, we observed that model performance exhibits a positive
correlation with window size. Figs. 5(c) and 5(d) demonstrate that
model performance generally improves as the window size increases.
9
This trend indicates that our recurrent learning framework effectively
utilizes long-term temporal data and autonomously extracts valuable
historical information. The performance gains are particularly pro-
nounced for the cit-HepTh dataset, which aligns with the inherent
characteristics of citation networks where long-term dependencies play
a crucial role in link formation. Conversely, the CollegeMsg dataset ex-
hibits reduced sensitivity to increased window size, reflecting the more
ephemeral nature of messaging interactions. To balance performance
gains with computational costs, we set the window size to 5 for all
datasets in our experiments.

Number of Encoding Layer The 𝑁𝑙𝑎𝑦𝑒𝑟 parameter determines the
depth of the structure-reinforced graph transformer and impacts its
ability to learn deep latent features. Our experimental investigation
varied 𝑁 from 1 to 9 to comprehensively assess its impact on
𝑙𝑎𝑦𝑒𝑟

S. Hu et al. Knowledge-Based Systems 320 (2025) 113661
model performance. Figs. 5(e) and 5(f) reveal a general trend of im-
proved performance with increased 𝑁𝑙𝑎𝑦𝑒𝑟. This empirical observation
suggests that deeper architectural configurations enable the capture
of more sophisticated temporal–structural patterns in dynamic graphs.
However, we observe diminishing returns and even slight performance
degradation for some datasets (e.g., cit-HepTh) at higher 𝑁𝑙𝑎𝑦𝑒𝑟 values.
This could be attributed to overfitting or the vanishing gradient prob-
lem in very deep networks. Considering the trade-off between model
performance and computational complexity, we chose 𝑁𝑙𝑎𝑦𝑒𝑟 = 4 for
our experiments, which provides a good balance across all datasets.

Number of Attention Head Multi-head attention allows the model
to focus on different representation subspaces simultaneously. Our
systematic evaluation encompassed 𝑁ℎ𝑒𝑎𝑑 values of 1, 2, 4, 8, and 16.
As shown in Figs. 5(g) and 5(h), increasing 𝑁ℎ𝑒𝑎𝑑 generally improves
model performance, particularly from 1 to 4 heads. This observation
aligns with established findings in attention mechanism research [27],
demonstrating the benefit of attending to multiple representation sub-
spaces. A notable observation is that performance tends to plateau or
even slightly decrease beyond 4 heads for most datasets. This could
be due to increased model complexity leading to overfitting, especially
on smaller datasets. Based on these results, we set 𝑁ℎ𝑒𝑎𝑑 = 4 in our
experiments, which provides optimal performance across datasets while
maintaining computational efficiency.

5. Related work

Dynamic graph representation learning methods aim to learn node
representations by incorporating both structural characteristics and
temporal dynamics of evolving graphs. These methods can be broadly
categorized into two types based on their modeling strategies: snapshot-
based discrete dynamic graphs and timestamp-based continuous dy-
namic graphs. This section reviews related works in these two cate-
gories.

5.1. Discrete dynamic graph representation learning

Building on the advancements and state-of-the-art achievements of
message-passing-based GNNs in static graph tasks [30], research has
progressed toward integrating GNNs with sequence models for dis-
crete dynamic graph representation learning. This integration paradigm
leverages GNNs for extracting structural information while employing
sequence models to capture evolutionary dynamics.

The established approach follows a two-stage process: GNNs first
extract structural features from temporal snapshots, followed by se-
quence models that capture evolutionary patterns between snapshots.
GCRN [13] exemplifies this methodology by combining GCN [30] for
node embedding generation with LSTM for temporal pattern learn-
ing. VRGNN [14] extends this framework by incorporating Variational
Graph Auto-Encoder, strengthening the model’s expressive power and
uncertainty modeling capabilities.

While these approaches provide effective solutions, their limited in-
ductive learning capability hinders their practical applications, partic-
ularly for newly introduced nodes. Subsequent research has addressed
this limitation through concurrent learning of structural and dynamic
features. EvolveGCN [7] introduces innovative architectures that cap-
ture graph sequence dynamics by evolving GCN parameters through
RNN, rather than directly updating node embeddings. DyTed [15]
advances this direction through a disentangled representation learn-
ing framework, decomposing node representations into independent
components for precise temporal–structural evolution characterization
while maintaining robust inductive capabilities. Recent theoretical
analyses [44] have sparked critical discussions on optimizing model
complexity in temporal networks, emphasizing efficient architectures
that capture essential dependencies without excessive complexity.

Recent innovations have systematically addressed the challenges of
feature propagation and over-smoothing while enhancing temporal–
structural integration. TR-SAGNN [16] presents a structure-adaptive
10
framework that combines temporal representation learning with resid-
ual connections, utilizing temporal attention and adaptive graph struc-
ture learning to capture node dynamics while mitigating feature prop-
agation issues. Similarly, TAL-TKGC [45] implements an importance-
weighted mechanism that balances temporal dynamics with structural
significance through temporal attention and weighted GCN architec-
ture. ROLAND [8] introduces a comprehensive framework that adapts
static GNNs to dynamic scenarios by treating multi-layer node embed-
dings as hierarchical states with recurrent temporal updates.

5.2. Continuous dynamic graph representation learning

The continuous dynamic graph represents edges at various temporal
instances as timestamped events, which can be denoted as a set of
triplets {⟨𝑣𝑖, 𝑣𝑗 , 𝑡⟩}, where ⟨𝑣𝑖, 𝑣𝑗 , 𝑡⟩ signifies the presence of an edge
between nodes 𝑣𝑖 and 𝑣𝑗 at the timestamp 𝑡. Various representation
learning methods for continuous dynamic graphs [9,10,37,38] aim to
understand and elucidate the evolving patterns of these graphs from
such temporal event sequences.

Continuous dynamic graph representation learning methods can be
broadly categorized into two main approaches: sequence-based mod-
eling methods and advanced temporal modeling methods. Sequence-
based modeling methods focus on capturing temporal-topological in-
formation by treating the graph evolution as a sequence of events.
CTDNE [9] generalizes random walk-based embedding techniques to
continuous dynamic graphs, effectively capturing local temporal pat-
terns but potentially struggling with long-range dependencies.
Attention-based methods like TGAT [37] and CAW [38] leverage self-
attention mechanisms to capture temporal-topological interactions.
TGAT introduces a temporal graph attention layer to aggregate fea-
tures from temporal-topological neighborhoods, while CAW proposes
Causal Anonymous Walks as an automatic retrieval mechanism for
temporal graphs. These methods excel at capturing complex temporal
dependencies but may face computational challenges with very large
graphs. DyGFormer [40] employs a Transformer-based architecture
with neighbor co-occurrence encoding and patching techniques to learn
from nodes’ historical first-hop interactions, effectively capturing both
short-term and long-term dependencies.

Advanced temporal modeling methods utilize sophisticated tech-
niques to model the continuous evolution of graphs. TREND [10]
leverages Hawkes processes to incorporate the evolutionary charac-
teristics of temporal edges into node representations. TimeSGN [42]
advances this direction by introducing a divided temporal-message
passing paradigm with an innovative state updater mechanism, achiev-
ing efficient modeling of node evolution while maintaining scalability.
From a geometric perspective, recent work [46] leverages hyperbolic
geometry to enhance temporal graph representation learning, offering
unique advantages in preserving hierarchical structures while ensur-
ing computational efficiency. R-GSAGE [41] employs neural ordinary
differential equations to model the continuous dynamic evolution of
node embedding trajectories, allowing for a more nuanced represen-
tation of temporal dynamics. GraSSP [47] proposes a novel stochastic
process to model link durations and their absences in continuous-time
graphs. ConTIG [17] integrates a recurrent structure into GraphSAGE
to jointly explore structural and temporal patterns while maintaining a
lightweight architecture, making it particularly efficient for large-scale
dynamic graphs.

Despite these advancements, existing approaches still face several
challenges. They learn evolutionary patterns implicitly, without ex-
plicitly considering the various temporal states of edges and their
impact on node representations. Furthermore, the prevalent use of
GNNs as the backbone for structural feature extraction often leads to
over-smoothing issues, limiting model performance. Additionally, most
current approaches struggle to effectively balance the modeling of both
short-term and long-term temporal dependencies, especially in graphs

S. Hu et al. Knowledge-Based Systems 320 (2025) 113661
with diverse temporal scales. Our proposed RSGT addresses these limi-
tations by introducing a novel edge temporal state modeling technique
and a structure-reinforced graph transformer. It allows for explicit
modeling of edge dynamics while effectively capturing both local and
global structural information, thereby overcoming the challenges faced
by existing methods.

6. Conclusion and future work

This paper introduces a novel recurrent framework for dynamic
graph representation learning, termed the Recurrent Structure-
reinforced Graph Transformer (RSGT). To better understand the tem-
poral dynamics of graphs, we propose capturing the influence of
dynamic interactions between nodes on the strength of their relation-
ships. Thus, we explicitly model edge temporal states by converting
each original snapshot into a weighted multi-relation graph based
on differences with previous snapshots. Subsequently, we design a
Structure-reinforced Graph Transformer (SGT) to recurrently learn and
update node temporal representations across the dynamically modeled
weighted multi-relation graphs. The SGT effectively encapsulates global
node semantic correlations, graph topology dependencies, and edge
temporal state features concurrently, stemming from a structure-aware
attention-reinforced mechanism that modifies the original node-wise
attention score with pairwise topological structure and the corre-
sponding shortest path. This leads to the generation of high-quality
node representations that encode both global semantic relevance and
structural information. The effectiveness of RSGT is validated through
extensive experiments, demonstrating superior performance in under-
standing the evolutionary characteristics of dynamic graphs compared
to existing baseline methods.

In future work, although RSGT demonstrates a well-balanced
effectiveness-efficiency trade-off, we aim to further enhance its scal-
ability for large-scale graph applications. For extremely large graphs,
two complementary optimization strategies warrant investigation. First,
distributed parallel training across multiple computing nodes could
leverage modern computational infrastructure to accelerate model con-
vergence. Second, adaptive neighborhood sampling techniques could
enable efficient subgraph extraction, significantly reducing compu-
tational requirements while preserving representation quality. These
approaches would enable RSGT to maintain its superior predictive
performance while efficiently processing large-scale dynamic graph
data, making it suitable for real-world enterprise deployment scenarios.
Beyond scalability, we aim to extend RSGT to heterogeneous dynamic
graphs, which comprise multiple node and edge types with diverse
attributes. This extension would enable more nuanced modeling of
complex systems in domains such as social networks, e-commerce,
and biomedical research. Such adaptations would demonstrate the
versatility of our approach while potentially advancing dynamic graph
analysis in novel directions.

CRediT authorship contribution statement

Shengxiang Hu: Writing – original draft, Resources, Investiga-
tion, Formal analysis, Conceptualization. Guobing Zou: Writing – re-
view & editing, Supervision, Funding acquisition. Song Yang: Visu-
alization, Validation, Data curation. Shiyi Lin: Methodology, Data
curation. Yanglan Gan: Writing – review & editing, Methodology,
Formal analysis. Bofeng Zhang: Writing – review & editing, Project
administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
11
Acknowledgments

This work was supported by National Natural Science Foundation
of China (No. 62272290, 62172088), and Shanghai Natural Science
Foundation, China (No. 21ZR1400400).

Data availability

Data will be made available on request.

References

[1] Y. Zhao, X. Luo, W. Ju, C. Chen, X.-S. Hua, M. Zhang, Dynamic hypergraph
structure learning for traffic flow forecasting, in: International Conference on
Data Engineering, ICDE, 2023, pp. 2303–2316.

[2] W. Du, S. Chen, Z. Li, X. Cao, Y. Lv, A spatial-temporal approach for multi-airport
traffic flow prediction through causality graphs, IEEE Trans. Intell. Transp. Syst.
25 (1) (2024) 532–544.

[3] Z. Yi, I. Ounis, C. MacDonald, Contrastive graph prompt-tuning for cross-domain
recommendation, ACM Trans. Inf. Syst. 42 (2) (2024) 60:1–60:28.

[4] J. Yu, X. Xia, T. Chen, L. Cui, N.Q.V. Hung, H. Yin, XSimGCL: Towards extremely
simple graph contrastive learning for recommendation, IEEE Trans. Knowl. Data
Eng. 36 (2) (2024) 913–926.

[5] C. Liu, W. Wu, S. Wu, L. Yuan, R. Ding, F. Zhou, Q. Wu, Social-Enhanced
explainable recommendation with knowledge graph, IEEE Trans. Knowl. Data
Eng. 36 (2) (2024) 840–853.

[6] H. Tian, X. Zhang, X. Zheng, D.D. Zeng, Learning dynamic dependencies with
graph evolution recurrent unit for stock predictions, IEEE Trans. Syst. Man
Cybern.: Syst. 53 (11) (2023) 6705–6717.

[7] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler,
T. Schardl, C. Leiserson, EvolveGCN: Evolving graph convolutional networks for
dynamic graphs, in: AAAI Conference on Artificial Intelligence, AAAI, 2020, pp.
5363–5370.

[8] J. You, T. Du, J. Leskovec, ROLAND: Graph learning framework for dynamic
graphs, in: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, SIGKDD, 2022, pp. 2358–2366.

[9] G.H. Nguyen, J.B. Lee, R.A. Rossi, N.K. Ahmed, E. Koh, S. Kim, Continuous-
time dynamic network embeddings, in: The Web Conference, WWW, 2018, pp.
969–976.

[10] Z. Wen, Y. Fang, TREND: TempoRal event and node dynamics for graph
representation learning, in: ACM Web Conference, WWW, 2022, pp. 1159–1169.

[11] B. Perozzi, R. Al-Rfou, S. Skiena, DeepWalk: Online learning of social represen-
tations, in: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, SIGKDD, 2014, pp. 701–710.

[12] A. Grover, J. Leskovec, Node2Vec: Scalable feature learning for networks,
in: ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, SIGKDD, 2016, pp. 855–864.

[13] Y. Seo, M. Defferrard, P. Vandergheynst, X. Bresson, Structured sequence mod-
eling with graph convolutional recurrent networks, in: International Conference
on Neural Information Processing, ICONIP, 2018, pp. 362–373.

[14] E. Hajiramezanali, A. Hasanzadeh, K. Narayanan, N. Duffield, M. Zhou, X. Qian,
Variational graph recurrent neural networks, in: Advances in Neural Information
Processing Systems (NeurIPS), 2019, pp. 10700–10710.

[15] K. Zhang, Q. Cao, G. Fang, B. Xu, H. Zou, H. Shen, X. Cheng, DyTed:
Disentangled representation learning for discrete-time dynamic graph, in: ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, SIGKDD, 2023,
pp. 3309–3320.

[16] X. Bi, Q. Jiang, Z. Liu, X. Yao, H. Nie, G.Y. Yuan, X. Zhao, Y. Sun, Structure-
adaptive graph neural network with temporal representation and residual
connections, World Wide Web 26 (5) (2023) 3389–3408.

[17] Z. Wang, P. Yang, X. Fan, X. Yan, Z. Wu, S. Pan, L. Chen, Y. Zang, C. Wang, R.
Yu, Contig: Continuous representation learning on temporal interaction graphs,
Neural Netw. 172 (2024) 106151.

[18] H. Zhu, X. Yang, J. Wei, Path prediction of information diffusion based on a
Topic-Oriented relationship strength network, Inform. Sci. 631 (2023) 108–119.

[19] Y. Zhou, G. Yang, B. Yan, Y. Cai, Z. Zhu, Point-of-Interest recommendation model
considering strength of user relationship for location-based social networks,
Expert Syst. Appl. 199 (2022) 117147.

[20] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, T.-Y. Liu, Do trans-
formers really perform badly for graph representation? in: Advances in Neural
Information Processing Systems (NeurIPS), Vol. 34, 2021, pp. 28877–28888.

[21] D. Chen, L. O’Bray, K. Borgwardt, Structure-Aware transformer for graph
representation learning, in: International Conference on Machine Learning, ICML,
2022, pp. 3469–3489.

[22] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, X. Sun, Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view,
in: AAAI Conference on Artificial Intelligence, AAAI, 2020, pp. 3438–3445.

http://refhub.elsevier.com/S0950-7051(25)00707-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb6
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb6
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb6
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb6
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb6
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb12
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb12
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb12
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb12
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb12
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb22

S. Hu et al. Knowledge-Based Systems 320 (2025) 113661
[23] T.K. Rusch, M.M. Bronstein, S. Mishra, A survey on oversmoothing in graph
neural networks, 2023, arXiv preprint arXiv:2303.10993.

[24] K.G. Quach, P. Nguyen, H. Le, T.-D. Truong, C.N. Duong, M.-T. Tran, K. Luu,
DyGLIP: A dynamic graph model with link prediction for accurate multi-camera
multiple object tracking, in: IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR, 2021, pp. 13784–13793.

[25] D. Xu, W. Cheng, D. Luo, X. Liu, X. Zhang, Spatio-temporal attentive RNN
for node classification in temporal attributed graphs, in: International Joint
Conference on Artificial Intelligence, IJCAI, 2019, pp. 3947–3953.

[26] X. Wang, X. He, M. Wang, F. Feng, T.-S. Chua, Neural graph collaborative
filtering, in: International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR, 2019, pp. 165–174.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, A.N. Gomez, Ł. Kaiser, I.
Polosukhin, Attention is all you need, in: Advances in Neural Information
Processing Systems (NeurIPS), 2017, pp. 5998–6008.

[28] S.P. Borgatti, Centrality and network flow, Soc. Netw. 27 (1) (2005) 55–71.
[29] M. Newman, Networks, 2018.
[30] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large

graphs, in: Advances in Neural Information Processing Systems (NeurIPS), 2017,
pp. 1024–1034.

[31] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, in: International
Conference on Learning Representations, ICLR, 2019.

[32] F. Béres, R. Pálovics, A. Oláh, A.A. Benczúr, Temporal walk based centrality
metric for graph streams, Appl. Netw. Sci. 3 (1) (2018) 1–26.

[33] P. Panzarasa, T. Opsahl, K.M. Carley, Patterns and dynamics of users’ behavior
and interaction: Network analysis of an online community, J. Am. Soc. Inf. Sci.
Technol. 60 (5) (2009) 911–932.

[34] J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: Densification laws,
shrinking diameters and possible explanations, in: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, SIGKDD, 2005, pp.
177–187.

[35] A. Paranjape, A.R. Benson, J. Leskovec, Motifs in temporal networks, in:
International Conference on Web Search and Data Mining, WSDM, 2017, pp.
601–610.
12
[36] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed represen-
tations of words and phrases and their compositionality, in: Advances in Neural
Information Processing Systems (NeurIPS), 2013, pp. 3111–3119.

[37] D. Xu, C. Ruan, E. Körpeoglu, S. Kumar, K. Achan, Inductive representa-
tion learning on temporal graphs, in: International Conference on Learning
Representations, ICLR, 2020.

[38] Y. Wang, Y.-Y. Chang, Y. Liu, J. Leskovec, P. Li, Inductive representation learning
in temporal networks via causal anonymous walks, in: International Conference
on Learning Representations, ICLR, 2021.

[39] A.G. Hawkes, Spectra of some self-exciting and mutually exciting point processes,
Biometrika 58 (1) (1971) 83–90.

[40] L. Yu, L. Sun, B. Du, W. Lv, Towards better dynamic graph learning: New
architecture and unified library, in: Advances in Neural Information Processing
Systems (NeurIPS), 2023, pp. 67686–67700.

[41] H.-Y. Yao, C.-Y. Zhang, Z.-L. Yao, C.P. Chen, J. Hu, A recurrent graph neural net-
work for inductive representation learning on dynamic graphs, Pattern Recognit.
154 (2024) 110577.

[42] Y. Xu, W. Zhang, Y. Zhang, M. Orlowska, X. Lin, TimeSGN: Scalable and
effective temporal graph neural network, in: IEEE International Conference on
Data Engineering, ICDE, 2024, pp. 3297–3310.

[43] P. Sarkar, D. Chakrabarti, M.I. Jordan, Nonparametric link prediction in dynamic
networks, in: International Conference on Machine Learning, ICML, 2012.

[44] W. Cong, S. Zhang, J. Kang, B. Yuan, H. Wu, X. Zhou, H. Tong, M. Mahdavi,
Do we really need complicated model architectures for temporal networks? in:
International Conference on Learning Representations, ICLR, 2023.

[45] H. Nie, X. Zhao, X. Yao, Q. Jiang, X. Bi, Y. Ma, Y. Sun, Temporal-structural
importance weighted graph convolutional network for temporal knowledge graph
completion, Future Gener. Comput. Syst. 143 (2023) 30–39.

[46] Y. Xu, W. Zhang, X. Xu, B. Li, Y. Zhang, Scalable and effective temporal graph
representation learning with hyperbolic geometry, IEEE Trans. Neural Netw.
Learn. Syst. (TNNLS) (2024) 1–15.

[47] A. Celikkanat, N. Nakis, M. Mørup, Continuous-time graph representation with
sequential survival process, in: AAAI Conference on Artificial Intelligence, AAAI,
2024, pp. 11177–11185.

http://arxiv.org/abs/2303.10993
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb29
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb37
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb37
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb37
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb37
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb37
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb39
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb39
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb39
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb40
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb40
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb40
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb40
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb40
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb41
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb41
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb41
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb41
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb41
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb42
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb42
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb42
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb42
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb42
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb43
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb43
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb43
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb44
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb44
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb44
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb44
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb44
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb45
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb45
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb45
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb45
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb45
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb46
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb46
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb46
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb46
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb46
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb47
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb47
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb47
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb47
http://refhub.elsevier.com/S0950-7051(25)00707-5/sb47

	Dynamic graph representation learning via edge temporal states modeling and structure-reinforced transformer
	Introduction
	Problem Formulation
	Approach
	Edge Temporal State Modeling of Dynamic Graph
	Recurrent Temporal Node Feature Extraction
	Global Semantic Encoding
	Structure Encoding
	Temporal Feature Extraction

	Model Training
	Complexity Analysis

	Experiments
	Datasets
	Competing Methods
	Experiment Results and Analyses
	Prediction task and parameter settings
	Comparison with competing baselines
	Computational Efficiency Analysis

	Ablation Study
	Edge Temporal State Modeling
	Graph Topology Learning

	Performance Impact of Parameters

	Related Work
	Discrete Dynamic Graph Representation Learning
	Continuous Dynamic Graph Representation Learning

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

