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Abstract

®

CrossMark

With the development of advanced generative technologies such as generative adversarial
networks and diffusion models, Al-generated images have become extremely realistic. As a
result, there is an urgent need for efficient detection tools to combat misinformation and protect
societal trust and personal privacy. Current detection methods perform well when identifying
content from known generative models, but their performance drops when facing unknown or
emerging technologies. Moreover, most detection methods focus on detecting local artifacts,
overlooking the extraction and effective fusion of global relationships and multi-scale features,
which makes it difficult to capture the complex patterns in Al-generated images. To address
these challenges, this paper proposes a multi-scale self-adaptive feature fusion network
(MSAFNet). Specifically, the proposed MSAFNet utilizes a global noise feature extraction
module to capture global noise patterns in images, compensating for the shortcomings of

existing methods that focus solely on local noise features. Meanwhile, it adopts a texture feature
extraction module to capture subtle texture anomalies and a color feature extraction module to
enrich color feature information, enhancing the expression capability of color features and
improving the recognition of complex features in Al-generated images. Lastly, we introduce a
self-adaptive feature fusion module to capture complementary information and the importance

of multi-scale features, ensuring efficient fusion of feature information across different
dimensions. Experimental results on the large-scale DFFD and CIFAKE datasets demonstrate
that the proposed MSAFNet achieves higher classification accuracy compared to other

Al-generated image detection methods.

Keywords: imaging, Al-generated image detection, loT security, deep learning

1. Introduction
The development of efficient detection methods for Al-

generated images is not only a critical technological safeguard
to curb the spread of misinformation but also contributes to

“ Author to whom any correspondence should be addressed.

building a more transparent and trustworthy information envir-
onment. However, the urgency of this need stems from the
exponential development of generative models. From the ini-
tial proposal of the generative adversarial networks (GANs
[1]) to the subsequent emergence of the variational autoen-
coders (VAEs [2]), the GLOW [3], the stable diffusion [4], and
numerous derivative models [5-9], the rapid iteration of gen-
erative models has significantly improved the quality and real-
ism of synthetic images. At the same time, this technological

© 2025 IOP Publishing Ltd. All rights, including for text and
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advancement has also brought about the risk of a decline in
societal trust. For example, the proliferation of fake or mis-
leading information, tampered facial images, and the spread
of other deceptive and libelous content is eroding public trust
in information. Therefore, developing efficient Al-generated
image detection methods is crucial to address technological
challenges and preserve information authenticity.

The task of detecting Al-generated images is the first intro-
duced by study [10], which explores the ability of traditional
detectors and deep learning-based detectors to identify GAN-
generated fake images in a social network environment. It
points out that only deep learning detectors maintain high
accuracy (ACC) even when facing compressed data [10].
However, conventional detection methods heavily depend on
the distribution of training data, making it difficult to reveal
the fundamental differences between Al-generated images
and real images. To further explore the unique characterist-
ics of GAN-generated images, researchers propose a series of
methods [11-15] that analyze artifact features in the frequency
domain or spectrum to identify synthetic images. These meth-
ods leverage specific frequency features inevitably introduced
during the image synthesis process by generative models,
improving the robustness and generalization ability of detec-
tion. Meanwhile, researchers focus on the differences between
Al-generated and real images in multiple dimensions. For
instance, a global texture enhancement method is introduced
to improve detection performance [16]. Additionally, a study
highlights that detection methods based on frequency-domain
analysis or global texture features primarily rely on specific
informational traces [17]. In the search for more effective
detection criteria, researchers discover that color informa-
tion also plays an important role in the decision-making pro-
cess. However, existing methods primarily rely on simplified,
single-type random grayscale data augmentation strategies,
such as the color-robust universal detector. This results in an
overly simplistic representation of color feature information,
making it difficult to capture the interactions and correlations
between different color spaces, thereby limiting the generaliz-
ation ability and adaptability of detection methods.

With the emergence of diffusion generative models, Ojha
et al [18]. are the first to identify the significant limitations of
GAN-based image detection methods in recognizing images
generated by diffusion models. To address this issue, some
detectors [19, 20] specifically utilize the artifacts inevitably
left by diffusion models to identify their generated images.
Meanwhile, to improve the generalization ability of detection
methods, researchers propose various approaches capable of
recognizing data from different sources, including those for
GAN-based generative models [5-8, 21, 22] and diffusion
model-based generative methods [23-26]. Building on this,
subsequent research shifts detection strategies toward noise
pattern analysis. Methods [27-32] apply the steganalysis rich
model (SRM) filters [33] or other local feature extraction tech-
niques to extract local noise artifacts, which serve as key cues
for detection. However, these methods primarily focus on local
noise analysis, often relying on fixed-size patches or selecting

only a subset of patches for detection [34]. This localized
approach tends to overlook the unique noise patterns that span
the entire image in generative images, resulting in an incom-
plete representation of noise features and thereby affecting the
comprehensiveness and ACC of detection.

Based on the above analysis, a multi-scale self-adaptive
feature fusion network (MSAFNet) is proposed for the effi-
cient detection of Al-generated images. This method com-
prehensively utilizes global noise, color features, and tex-
ture information to enhance detection generalization and
robustness. Firstly, a global noise feature extraction mod-
ule (GNFEM) is designed to capture the global noise pat-
terns in the input image. Within this module, the noise net
further extracts deep-level global noise features to uncover
the noise artifacts left by the generative model in the image.
Next, a color feature extraction module (CFEM) is introduced,
which converts the original RGB image into five different
color spaces to enrich the representation of color features.
Meanwhile, the color net explores the potential correlations
between different color spaces, enhancing the model’s abil-
ity to perceive color features. Additionally, the texture feature
extraction module (TFEM) uses the local binary pattern (LBP)
algorithm to compute the global texture features of the input
image, and the texture net further extracts subtle texture differ-
ences from the local regions of the image to enhance the detec-
tion of texture artifacts in generated images. Finally, a self-
adaptive feature fusion module (SAFM) is proposed to integ-
rate complementary information from different sub-features
and adaptively adjust the weight distribution of each sub-
feature, ensuring the ACC and robustness of feature fusion [35,
36]. This improves the detection capability of Al-generated
images. Our main contributions can be summarized as follows:

(1) To address the issue that existing methods based on local
block analysis often overlook the global noise patterns in
images, the GNFEM is proposed. This module utilizes
the SRM filter to directly extract the global noise patterns
from the entire input image, and through the noise net,
deep global noise features are mined, thereby improving
the sensitivity of the detection method to artifacts in Al-
generated images.

(2) Existing methods for color feature extraction are often
overly simplistic and overlook the dependencies between
different color spaces. To address this, the CFEM is pro-
posed. The input image is first converted from the RGB
color space into five different color spaces (‘gray’, ‘lab’,
‘ycber’, ‘ecmyk’, and ‘hsv’). The channels from these color
spaces are then concatenated to enrich the color feature
information. Next, the color net extracts more diverse
and discriminative color features while learning the com-
plex dependencies between different color spaces, thereby
enhancing the expression capability of color features.

(3) To efficiently integrate different sub-features, the SAFM
is proposed. This module is capable of learning the com-
plementary information between different sub-features



Meas. Sci. Technol. 36 (2025) 095402

L Yao et al

and adaptively optimizing the fusion ratio of each fea-
ture through a dynamic weight adjustment mechanism.
This ensures the optimal fusion of multi-source features
within a unified framework. This strategy significantly
enhances the model’s ability to learn the complex relation-
ships between multi-source features, thereby improving
the ACC and robustness of Al-generated image detection.

2. Related work

This section briefly introduces the mainstream image gener-
ation technologies and detection methods for Al-generated
images.

2.1. Image generation

In recent years, with breakthroughs in deep learning tech-
nology, image generation techniques make significant pro-
gress, enabling the synthesis of visual content that closely
resembles real images. The current mainstream image gen-
eration methods include the GANs [1], the VAEs [2], and
the stable diffusion [4], each offering advantages and being
suitable for different application scenarios. The GANs con-
tinuously optimize the realism of generated images through
adversarial training between a generator and a discriminator.
However, the training process tends to be unstable and often
encounters mode collapse issues. In contrast, the VAEs use an
encoder-decoder structure for probabilistic modeling, demon-
strating a balanced performance in stability and diversity of
generated samples. However, generated images often suffer
from blurred details due to probabilistic approximation bias. In
recent years, the stable diffusion rapidly develops, achieving
image generation through a mechanism of gradually adding
and removing noise. They outperform the GANs and the VAEs
in terms of training stability and generation quality, mak-
ing them one of the most advanced image generation meth-
ods. The stable diffusion shows broad application potential
in areas such as text-to-image generation and medical image
synthesis.

2.2. Al-generated image detection

Early research on the detection of Al-generated images
primarily focuses on frequency-domain artifact features in
GAN-generated images [37]. A study [12] discovers that
GANS rely on convolution-based up-sampling methods, mak-
ing it difficult to replicate the frequency spectrum distribu-
tion of real data. Researchers leverage this flaw and focus
on extracting frequency spectrum features for detection.
Furthermore, Dzanic et al [13]. propose a high-frequency
signal analysis method based on the discrete Fourier trans-
form, differentiating generated images through spectral fea-
tures under high resolution and low compression condi-
tions. In addition, some researchers find that global texture
features [16] and color features [17, 38] are also important
distinguishing cues. However, method [17] primarily employs

random grayscale transformations as a means of color inform-
ation augmentation, which limits its representational richness.
Similarly, the strategy [38] is based on color imaging forensics
but is restricted to analysis within the standard RGB color
space. This limitation prevents a comprehensive exploration
of potential discriminative information across multiple color
spaces. Consequently, the utilization of color features may be
inadequate. With the rise of diffusion models, Ricker et al [39].
point out that images generated by diffusion models do not
exhibit obvious artifacts in the frequency domain. Chen et al
[27]. further discover structural differences between images
generated by diffusion models and those produced by GANSs.
These differences lead to a significant decline in the perform-
ance of traditional frequency-domain detection methods when
identifying diffusion-generated images.

To address the above issues, methods are proposed to ana-
lyze specific artifacts left by various generative models in the
high-frequency components of synthetic images [7, 8]. As a
result, subsequent researchers commonly use the SRM [33] to
extract noise patterns from images when faced with images
generated by unknown generative models. For example, in
the SSP method [27], researchers focus on extracting hidden
noise from the simplest texture regions of an image (i.e. areas
with the lowest texture complexity), while the AIDE method
[28] uses discrete cosine transform (DCT) scores, selects two
patch blocks from the highest and lowest frequencies based
on the scores, and uses the SRM to extract the noise patterns
of the four patches, followed by feature fusion with global
semantic information extracted by the contrastive language-
image pre-training[40]. Similarly, Li et al [30]. proposed a
collaborative modeling strategy that integrates noise features
from the spatial domain with energy distributions in the fre-
quency domain. They utilized SRM to extract both salient
and subtle noise patterns from strong-texture and weak-texture
regions, respectively, and employed an enhanced DCT-based
channel attention mechanism for frequency-domain guidance.
This approach improves the model’s ability to perceive arti-
facts under varying noise intensities. Meanwhile, Cavia et al
[29]. focused solely on fixed-size patch-level modeling. They
applied convolutional networks with extremely small recept-
ive fields to independently assign a forgery score to each patch
and then aggregated these scores via pooling to obtain a global
decision, thereby forming a detection framework based on
local information. However, these methods are mainly based
on local patch blocks for noise feature extraction, which may
overlook the global noise distribution characteristics of the
image. Therefore, Zhong et al [41]. propose a new strategy
that divides the entire image into multiple patch blocks and
then reorganizes them based on texture richness, disrupting
the original semantic information of the image to extract noise
patterns. Their research focuses on the correlation of noise
patterns between rich and barren regions rather than only on
the features of the noise patterns themselves. However, this
method disrupts the semantic structure of the image, which
may weaken the long-range correlations of the image’s noise
patterns, thus affecting detection performance.
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Figure 1. The architecture of the proposed MSAFNet.
3. Proposed method image, which can be represented as
. . . (1)
The architecture of the proposed MSAFNet is shown in X, =v(X). (H

figure 1. This method mainly consists of two core mod-
ules: the feature extraction module and the classifier module.
The feature extraction module includes four sub-modules: the
GNFEM, the CFEM, the TFEM and the SAFM. The GNFEM
is designed to extract the global noise patterns, the CFEM
captures the color features, and the TFEM extracts the tex-
ture features. Additionally, the SAFM is proposed to analyze
image features from multiple dimensions, learn complement-
ary information between sub-features, and adaptively allocate
weights to enhance system robustness. The classifier module
consists of a multi-layer perceptron (MLP), which processes
the fused features and outputs the final classification decision.

3.1. Feature extraction module

3.1.1 GNFEM. The previous AIDE [28] method primar-
ily focuses on analyzing local noise patterns in images. This
method divides the image into multiple patch blocks and uses
a DCT scoring module to select certain patch blocks, then
extracts the noise patterns from these patches for subsequent
analysis. However, this strategy disrupts the long-range cor-
related noise patterns in Al-generated images and overlooks
global noise information, thus limiting the feature expression
capability of the noise patterns. To address this issue, our
module abandons the local patch block strategy and instead
uses the entire image to preserve the global noise patterns.
Specifically, the SRM [33, 37, 42-44] method is applied to
the input image X € REXCXHXW (where B, C, H, and W rep-
resent the batch size, the channel, the height, and the width ,
respectively.) to extract the global noise pattern of the entire

The global noise feature X 51) € REXCXHIXWi jg extracted
through the function +(-), which employs the SRM method
based on predefined high-pass filters to enhance subtle resid-
ual noise features in the image, thereby facilitating forensic
analysis.

Next, the deep global noise pattern X
(where H' = % and W = %) can be expressed as

c RBXC/XH/XW/

Xi=v (x) @

where ¢ (-) represents the noise net, which consists of one
block2 and three blockl. The specific structure of the noise
net is shown in figure 1.

3.1.2. CFEM. Although previous method [17, 45] recog-
nizes the importance of color features, a random grayscale
processing approach is used. This approach results in a singu-
lar color feature representation. Additionally, the interrelation-
ships between different color spaces are ignored. To enhance
the expressive power of color information, the CFEM is pro-
posed. This module converts the input image X € REXCxH*W
from the default RGB color space to five different color spaces
(‘lab’, ‘cmyk’, ‘ycber’, ‘hsv’, and ‘gray’), thus constructing a
richer multi-dimensional color representation system. It can

be formulated as
X;=7T;(X), j={lab,cmykycbcrhsv,gray}.  (3)

The converted images Xgray € RE*VHXW X0 o Xy, Xiab €
REX3XHXW and Xemyk € REX4*HXW can be obtained through
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7;(X), which converts the RGB image X into the j—th color
space.

Subsequently, the images from different color spaces are
concatenated along the channel dimension, producing the
fused output Xgl) € REX14xHXW Thig enables the collaborat-
ive exploration of multiple color spaces, thereby enhancing
the expressive power of color features. This strategy effect-
ively addresses the issue of overly simplified color inform-
ation caused by random grayscale processing [17], allow-
ing the model to comprehensively utilize feature informa-
tion from different color spaces. The process is specifically
represented as

Xgl) =Ch (thwacbcryXlabaXcmyhXgray) (4)

where Ch(-) represents the channel concatenation.
Finally, the deep color feature X, € REXC *H XW" can be
described as

X = (1)) )

where ¢ (-) represents the color net, which consists of four
blockl. The specific structure of the color net is shown in
figure 1. Specifically, Blockl performs nonlinear combina-
tions through convolution operations to reveal the hidden cor-
relations between different color spaces. The design goal of
the color net is to facilitate cross-channel information interac-
tion across multiple color domains, fully exploring the correl-
ated features within the color spaces. This enables the model to
more effectively capture local inconsistencies and global dis-
tortions in the image, thereby enhancing the expressive power
of color information.

3.1.3. TFEM. Previous studies [16] show that embedding
texture features into a network helps improve the model’s gen-
eralization ability and has confirmed that texture features are
key criteria for detecting Al-generated images. Inspired by
this, the TFEM is introduced, specifically designed to extract
texture information from the input image. Given the input
image X € REXCXHXW the texture feature map can be pro-
cessed using the LBP algorithm and can be described as

XM =n(x). (6)

The texture feature map X§) € REX!1*H*W can be obtained
vian(-), where 7)(-) denotes the application of the LBP method
to enhance texture representation by encoding texture vari-
ations in the image.

Subsequently, the subtle texture anomaly feature X3 €
RBXC'XH' W' can be computed as

X =6 (X) )
where ¢ (-) represents the texture net, which consists of four

blockl. The specific structure of the texture net is shown in
figure 1. Through progressive feature extraction, the texture

net enhances the model’s ability to recognize local texture
anomalies, further improving its detection of subtle texture
irregularities.

3.14. SAFM. Previous research methods (such as [28]
and [46]) used traditional fixed-weight fusion strategies, such
as average fusion or channel concatenation. However, these
methods are difficult to adapt to the dominant artifact fea-
tures of different generation models and struggle to effectively
learn the complementary information between individual sub-
features. The SAFM is designed to address this issue, drawing
inspiration from the multi-head self-attention mechanism in
Transformer architectures [47—49]. This module models cross-
feature dependencies, enabling information complementarity
between sub-features and adaptive weight allocation, thereby
enhancing the model’s flexibility and generalization ability.
The specific structure of the SAFM is shown in figure 2.

The input includes three feature maps, denoted as
X1, X2, X3 € REXCXH'>XW' renresenting the deep global noise
pattern, the deep color feature, and the subtle texture anomaly
feature, respectively. To obtain a global description of each
feature map, adaptive average pooling (AAP) is applied to
each X;, reducing its spatial dimensions to 1 x 1. This process
can be expressed as

X' = o (X)), i={1,2,3}. (8)

Each spatially compressed feature map can be obtained
through «(+) , where «(-) denotes the AAP.

Next, the three global description vectors are concatenated
along the feature dimension to construct a comprehensive fea-
ture representation, ensuring that the information from each
sub-feature is preserved and utilized in subsequent processing,
which can be computed as

Fe—§ (XFI)DOI,XPZ)OOI,XEOOI) ) (9)

The fused feature Fe € REXC'X3 (where 3 represents the
number of input features) can be obtained through §(-), where
0() represents concatenation along the feature dimension.
This fused feature ensures the integrity of each sub-feature’s
information, providing a richer representation for subsequent
processing.

To leverage the attention mechanism for adaptive weighting
of features and capture complementary information between
sub-features, the Query (Q), the Key (K), and the Value (V)
representations need to be constructed. To achieve this, three
separate 1D convolutional layers are applied to Fe, as repres-
ented by

0 = W2 x Fe € RB*C'*3
K= WK*FEGRBXC/X3
V= WV*FeGRBXC/XS

(10)
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Figure 2. The architecture of the SAFM.

where W2, WK, WV € RC'*C"x! represent the corresponding
convolution kernels with a size of 1 x 1, and * denotes the
convolution. This process constructs the Q, K, and V rep-
resentations. These serve as the foundation for the attention
mechanism.

To enhance the model’s expressive power, the channel
dimension C’ is divided into / attention heads. Each attention
head processes a subset of the channel information independ-
ently. The dimension of each head can be defined as

c
d=—.
h

an
Additionally, to ensure the computational validity of the
multi-head attention mechanism, C’ must be divisible by A.
By reshaping the Q, the K, and the V to achieve attention head
segmentation, the shapes can be transformed as

O, Kn, V) € REX3xd, (12)

This operation allows subsequent attention calculations to
occur independently within each subspace, enabling differ-
ent attention heads to focus on the feature interaction pat-
terns within their respective subspaces, thereby improving the
model’s adaptability to various generated artifacts.

For each attention head, the attention scores S, between
the O and the K are first calculated through matrix multiplica-
tion, and scaled by v/d to prevent numerical instability caused
by excessively large values. The computation process can be

presented as

T
S, = QK c RBxhx3x3

Vd

The attention scores are then normalized through the oper-
ation, resulting in the generation of the attention weight matrix
oy, which can be represented as

13)

6RB><]1><3><3 (14)

ay, = Softmax (Sj,)
where Softmax(-) denotes the normalization.

Then, the attention weight matrix oy, is applied to the val-
ues V, to enhance important features and suppress redund-
ant information, while ensuring that each attention head can
optimize feature interactions within independent subspaces.
The final output of the attention head O, can be generated as

Oy = a V) € REW3xd, (15)
To fuse the diverse feature patterns learned by multiple
heads, dimension permutation is first performed on the out-
put of each head Oy, after which the results from all heads are
merged and restored to the channel dimension. This ensures
that the fused feature information is both complete and diverse.
This process can be formed as
O =PR(0y). (16)
The final feature pattern O € RB*3*C’ can be obtained
through PR(-), where PR(-) represents the process of fusing
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the multi-head outputs. This fusion ensures that each output
feature (a total of 3 features) retains complete channel inform-
ation, enhancing the consistency and integrity of the feature
representation.

To further extract more refined cross-channel complement-
ary information, a 1D convolution layer is applied to the pre-
viously fused output O for information extraction, generating
the fused feature description O € RE*3%C" can be expressed
as

0 =W %0 e R (17
where WO represents the convolution kernel of size 1 x 1.

Next, average pooling is applied along the channel dimen-
sion to each feature description (corresponding to the ith input
feature), and its mean is computed, thereby obtaining the
scalar response w; for each feature

Cl
1 ~
wi:CIE OIJERBX37 i=12,3. (18)
j=1

Moreover, normalized weights are generated to ensure that
the weight distribution between different features is inter-
pretable and stable. The specific process can be formulated as

_ exp (w;) Bx3
37ER ’

w; =

2 exp ()

i=1,2,3. (19)

These weights (w;) represent the contribution of each input
feature in the final fusion process, enabling adaptive weighted
fusion.

Subsequently, the original three input feature maps
X1,X2,X5 are stacked along a new dimension to form a uni-
fied tensor X € REX3*C xH'xXW' for qubsequent feature pro-
cessing and the application of the attention mechanism a.s.
which can be outlined as

X=5(X1,X2,X3) (20)
where S(-) represents the process of stacking the three original
features.

Finally, using the previously calculated weights {w;}3_,, a
weighted operation is performed on each component of X, and
the results are summed along the feature dimension, The final
adaptive fused features Xpyeeq € REXC H' W' can be denoted
as

3

Xfused = Z wiOX;
i=1

21

where © represents the weighted operation.

The final fused feature map Xpyseq integrates global inform-
ation from the three input features across different spa-
tial locations, while capturing the complementary relation-
ships between them. The adaptive weight mechanism further

enhances key information, providing a richer and more effect-
ive feature representation for the subsequent classifier module,
thereby improving the model’s discriminative ability.

3.2. Classifier module

Finally, the fused features are flattened and input into the MLP.
The decision scores are generated after passing through three
linear layers and two GELU [50] activation functions. This
transformation can be expressed as

9; = MLP (Xpysed) - 22)

The learnable parameters in the feature extraction module
and classifier module are optimized to minimize the cross-
entropy loss function. Its mathematical expression is as fol-
lows

N

1 ) .
1= _N; (vilog#;) + (1 —y;)log(1 —3,)

(23)
where y; is the ground truth label, and y; is the predicted prob-
ability. During the inference phase, the model can directly
extract features from input images of any size and output the
detection results, without requiring additional preprocessing
or postprocessing steps.

4. Experiments

4.1 Datasets

To comprehensively and effectively evaluate the proposed
MSAFNet, we select two representative datasets: the DFFD
[51] and the CIFAKE [52]. The DFFD is a comprehensive
dataset specifically designed for deepfake detection, covering
four types of digital face manipulations, and includes various
manipulation methods and different degrees of tampering. The
CIFAKE dataset consists of two parts: one part includes real
images directly sourced from the CIFAR-10 [53], and the other
part contains an equal number of synthetic images generated
using the stable diffusion model [4]. These two datasets each
offer unique challenges and characteristics, providing a more
comprehensive evaluation of the performance of our detection
method.

4.1.1. DFFD datasets. = The DFFD is a comprehensive data-
set specifically designed for deepfake detection and local-
ization research, renowned for its rich diversity and broad
challenges. The dataset covers various types of forged faces,
including identity swaps, expression changes, attribute manip-
ulations, and completely synthetic face images. Specifically,
the DFFD dataset constructs forged images from four main
dimensions: first, complex identity and expression swaps
based on video clips from FaceForensics++; second, fine-
grained attribute editing of images from the FFHQ [8] and
CelebA [54] datasets using FaceAPP and StarGAN [55];
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Table 1. Detailed split of training and testing sets in the DFFD dataset.

Subdatasets img_align_celeba ffhq pggan_vl pggan_v2 stylegan_celeba stylegan_fthq stargan faceapp

REAL/FAKE REAL REAL FAKE FAKE FAKE FAKE FAKE FAKE

Train 162770 10000 9975 9982 10000 9999 10000 6309

Test 19 867 999 998 1000 1000 1000 1000 999

Table 2. Detailed split of training and testing sets in the CIFAKE dataset.

Class airplane automobile bird  cat

deer

dog frog  horse ship truck

Train 10000
Test 2000

10000

2000 2000 2000

10000 10000 10000 10000 10000 10000 10000 10000
2000

2000 2000 2000 2000 2000

additionally, high-quality synthetic face images are generated
using pre-trained models from PGGAN [7] and StyleGAN [8].
This multi-layered application of techniques makes DFFD not
only cover a wide range of forgery types but also possess
significant variability within each category, greatly enrich-
ing the dataset. In this study, we primarily used eight sub-
sets from the DFFD dataset, including img_align_celeba,
ffhq (real images), pggan_v1, pggan_v2, stylegan_ffhq, styl-
egan_celeba, faceapp, and stargan (fake images), totaling
229 035 training images and 26 863 testing images. These sub-
sets are balanced in terms of gender, age, and face size, ensur-
ing the data is unbiased and diverse. Detailed information
about the subsets can be shown in table 1.

4.12. CIFAKE datasets. =~ The CIFAKE dataset is a unique
dataset specifically designed for recognizing Al-generated
synthetic images. Its structure is consistent with the classic
CIFAR-10 [53] dataset, containing real and synthetic images
of size 32 x 32 pixels across ten categories (e.g. airplanes, cars,
birds, cats, etc), providing rich diversity for evaluating the
model’s robustness and generalization ability. The CIFAKE
dataset consists of 60000 real images directly from CIFAR-
10 and 60 000 high-quality synthetic images generated using
the stable diffusion model, with 6000 images per category,
totaling 120 000 images. The dataset is randomly divided into
50000 training images and 10000 testing images. Table 2
provides a breakdown of the number of images in each cat-
egory for both the training (Train) and testing (Test) sets.

4.2. Experimental setup

In our method, we use the Adam optimizer with no weight
decay (i.e. the weight decay coefficient is set to 0), and the
learning rate is set to 0.0001. Additionally, we construct a
learning rate scheduler that combines linear warm-up and
cosine annealing strategies. The linear warm-up is used to
gradually increase the learning rate in the initial stages of train-
ing to stabilize the training process, while cosine annealing
smoothly decreases the learning rate throughout the training
cycle to promote better model convergence. The batch size is
set to 64. For the DFFD dataset, the training epoch is limited

to 15, while for the smaller CIFAKE dataset, the number of
epochs is increased to 25. All experiments are conducted on
a computer equipped with an NVIDIA GeForce RTX 3090
GPU, using the PyTorch framework, Python version 3.9, and
CUDA version 11.3.

This study addresses a binary classification problem and
uses two key evaluation metrics—the ACC and the area under
the curve (AUC)—to assess the model’s performance on the
validation set. These metrics have been widely used in previ-
ous research [46, 56-58] and can evaluate the model’s classi-
fication capability and robustness from different perspectives.

The ACC is a fundamental metric for evaluating the per-
formance of classification models, especially in binary classi-
fication tasks. The ACC reflects the overall classification ACC
of the model by calculating the ratio of correctly predicted
samples to the total number of samples. The AUC, on the other
hand, provides an evaluation method that is unaffected by class
distribution. Specifically, the AUC represents the area under
the ROC curve, which illustrates the relationship between the
true positive rate and the false positive rate at different classi-
fication thresholds. Therefore, the AUC not only measures the
model’s ability to distinguish between positive and negative
samples but also provides a more stable evaluation in the case
of imbalanced class distributions.

By using both the ACC and the AUC, a more comprehens-
ive evaluation of the model’s classification ability and robust-
ness can be achieved. This ensures that the selected model
maintains high ACC overall, while still being able to distin-
guish effectively in imbalanced datasets.

4.3. Comparative experiments

To validate the superiority of the proposed framework, com-
parative experiments are conducted with methods (Vision
Transformer [59], Swin Transformer [60], AIDE [28],
ConvNeXt [61], DeiT [62], FreDect [15], GramNet [16], and
LGrad [63]). To ensure fairness, all models, including ours,
are trained and tested on the same dataset with identical batch
size and epoch settings. The experimental results are shown
in tables 3 and 4, where bold and underlined values indicate
the best and second-best results in each column, respect-
ively. On the DFFD dataset, our method achieved 99.24%
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Table 3. Comparison results of our method and other methods on
the DFFD dataset.

Method Pre-training ACC (%) AUC (%)
Vision Transform-T (2020) FALSE 95.60 98.79
Swin Transform-T (2021) FALSE 98.33 99.79
CovNexT-B (2022) FALSE 97.51 99.73
DeiT-B (2020) FALSE 96.22 99.30
AIDE (2024) TRUE 98.56 99.90
FreDect (2020) FALSE 98.54 99.88
GramNet (2020) FALSE 97.63 99.77
LGrad (2023) TRUE 98.04 99.78
Ours FALSE 99.24 99.95

Table 4. Comparison results of our method and other methods on
the CIFAKE dataset.

Method Pre-training ACC (%) AUC (%)
Vision Transform-T (2020) FALSE 90.82 96.85
Swin Transform-T (2021) FALSE 94.57 98.84
CovNexT-B (2022) FALSE 96.95 99.61
DeiT-B (2020) FALSE 95.50 99.29
AIDE (2024) TRUE 96.78 99.51
FreDect (2020) FALSE 89.56 96.28
GramNet (2020) FALSE 97.01 99.61
LGrad (2023) TRUE 93.65 98.29
Ours FALSE 97.60 99.66

ACC and 99.95% AUC without pre-training, outperforming
other state-of-the-art methods with an average ACC improve-
ment of 1.69%. On the more challenging CIFAKE dataset,
our method achieves an average ACC improvement of 3.25%
compared to the other methods. These results strongly demon-
strate the significant advantages of our framework in handling
Al-generated images from various generators.

Our method achieves strong detection performance on
both DFFD and CIFAKE, validating the effectiveness of the
MSAFNet in addressing fake images generated by various
generators. The experimental results show that our method
outperforms traditional generic image classification methods,
such as the Vision Transformer, the Swin Transformer, the
ConvNeXt, and the DeiT, in terms of both the ACC and
the AUC. This result proves that our method successfully
captures the complex internal artifact relationships in Al-
generated images, showcasing its specialized advantage in
the field of Al-generated image detection. Furthermore, com-
pared to detection frameworks like the AIDE, the FreDect, the
Gram-Net, and the LGrad, which are designed for the same
task, our method achieves optimal detection ACC even without
pretraining. This advantage further highlights the importance
of the three types of sub-features (global noise patterns, color
features, and texture features) extracted by our method, which
form the key basis for Al-generated image detection.

It is worth noting that the FreDect [15] achieves the second-
highest ACC and AUC on the DFFD dataset, but its ACC drops
significantly on the CIFAKE dataset. The main reason for this
is that the FreDect relies on frequency-domain anomaly detec-
tion, which identifies based on the frequency-domain features

of the image. On the DFFD dataset, since most of the generated
images are produced by GANSs, these images exhibit obvious
artifacts in the frequency domain, which explains the method’s
good performance on this dataset. However, on the CIFAKE
dataset, images generated by Stable Diffusion lack distinct
frequency-domain artifacts, resulting in reduced detection per-
formance for the FreDect.

To address this limitation, our method introduces improve-
ments in two aspects. Firstly, the GNFEM, CFEM, and TFEM
modules are incorporated to extract global noise patterns,
color features, and texture features, respectively. These mod-
ules enhance the representation of image features from mul-
tiple perspectives, compensating for potential information loss
caused by relying on a single feature. Secondly, the SAFM
module is adopted for multi-scale adaptive feature fusion,
enabling the model to learn complementary information
between different sub-features, thereby improving the over-
all detection ability and generalization performance. Through
these improvements, our method overcomes the limitations of
existing techniques on specific types of datasets and enhances
the robustness of the model.

Additionally, the GramNet [16] improves detection gen-
eralization by embedding global texture information in the
ResNet-50 backbone network. It performs well on both the
DFFD and CIFAKE datasets, further validating the importance
of global texture information in Al-generated image detec-
tion, and supporting the effectiveness of the TFEM module
in extracting texture features in our approach.

4.4. Ablation study

4.4.1. Validating the effectiveness of global noise patterns.
Ablation experiments are conducted on both datasets to val-
idate the effectiveness of global noise patterns in comparison
to local noise patterns. The specific experimental setup is as
follows: To ensure a fair comparison with the local patch-
based noise pattern strategy, the method proposed by the AIDE
[28] is referenced. First, the DCT scoring is used to select
two patches with the highest and lowest frequencies based on
the score, and then the SRM is applied to extract the noise
patterns from these four patches. Subsequently, the proposed
noise net is employed to mine deep fake artifact features, and
decision outputs are made through the MLP. In contrast, the
global noise analysis method discards the image segmentation
strategy and directly applies the SRM filtering to the entire
input image. The subsequent processing steps remain identical
to those in the local patch-based approach.

In the experimental process, noise patterns are first extrac-
ted through the SRM, and then processed using the noise net
to obtain feature maps. To ensure fairness and consistency,
the number of channels in the feature maps is set to 64, and
the height and width of the feature maps are controlled by
adjusting the number of blockl layers in the noise net. This
ensures that the feature map sizes for both global and local
noise patterns are consistent during decision making. In the
experimental results tables, the dimensions of the feature maps
are shown only in terms of height and width. The experimental
results are presented in the tables 5 and 6, where the bold and
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Table 5. Comparison of noise pattern extraction strategies on the
DFFD dataset.

Strategy Feature size ACC (%) AUC (%)

Global noise 16 x 16 98.81 99.91
8x8 98.97 99.93
4 x4 98.87 99.85

Patch noise 16 x 16 96.07 99.07
8x8 96.18 99.17
4x4 96.19 99.18

Table 6. Comparison of noise pattern extraction strategies on the
CIFAKE dataset.

Strategy Feature size ACC (%) AUC (%)

Global noise 16 x 16 95.62 98.99
8x8 96.06 99.10
4 x4 95.97 99.16

Patch noise 16 x 16 84.76 92.38
8 x8 84.62 92.08
4x4 85.08 92.57

underlined values indicate the first and second best results in
each column, respectively.

The experimental results show that, when the feature map
size is the same, the global noise pattern analysis outperforms
the local noise pattern analysis in terms of both ACC and AUC
on both datasets. On the DFFD dataset, the global noise ana-
lysis method achieved an ACC of 98.97% and an AUC of
99.93% at the optimal resolution (64 x 8 x 8), which is an
improvement of 2.78 and 0.75 percentage points over the best
local noise method (the ACC = 96.19%, the AUC = 99.18%).

It is worth noting that the advantage of global noise pattern
analysis is more pronounced in the CIFAKE dataset. At the
same optimal resolution (64 x 8 x 8), this method achieved
an ACC of 96.06% and an AUC of 99.10%, far surpassing
the local method with the same feature map size (the ACC =
84.62%, the AUC = 92.08%). Even compared to the best local
noise method (the ACC = 85.08%, the AUC = 92.57%), the
ACC still improved by 10.98 percentage points, demonstrating
a significant performance advantage. Further analysis of the
impact of feature map size on detection performance revealed
that the global noise analysis method achieves the best per-
formance at the resolution of (64 x 8 x 8), which is why all
subsequent ablation experiments are conducted using this fea-
ture map size. This result may be attributed to the ability of
the global method to capture the long-range dependencies of
image noise patterns, whereas the local method, due to inform-
ation isolation between image patches, struggles to fully lever-
age the global noise information. These results provide quant-
itative evidence that global noise analysis offers a clear per-
formance edge in Al-generated image detection.

Table 7. Ablation experiment results of feature extraction modules
on the DFFD dataset.

GNFEM CFEM TFEM ACC (%) AUC (%)
v X X 98.97 99.93
x v X 98.35 99.82
x X v 96.89 99.54
v v X 99.17 99.94
v x v 99.02 99.89
x v v 98.31 99.87
v v v 99.24 99.95

Table 8. Ablation experiment results of feature extraction modules
on the CIFAKE dataset.

GNFEM CFEM TFEM ACC (%) AUC (%)
v X X 96.06 99.10
x v X 96.99 99.47
x X v 92.93 97.92
v v X 97.57 99.64
v x v 96.20 99.27
x v v 97.30 99.59
v v v 97.60 99.66

4.4.2. Verifying the effectiveness of each feature extraction
module. To systematically evaluate the independent con-
tributions and synergistic effects of the GNFEM, the CFEM,
and the TFEM feature extraction modules, multiple ablation
experiments are conducted on the DFFD and CIFAKE data-
sets. The experimental results are shown in tables 7 and 8.
In all experiments, the feature maps generated by each fea-
ture extraction module are kept consistent, and other network
parameters are kept unchanged to eliminate the influence of
confounding factors.

The experimental results show that on both the DFFD
and CIFAKE datasets, the model achieves the best ACC and
AUC values when all three sub-feature extraction modules (the
GNFEM, the CFEM,the TFEM) are combined. Among them,
the global noise pattern extracted by the GNFEM demon-
strates excellent detection capabilities on both datasets. When
using the GNFEM alone, its ACC value is typically the
highest or second highest, proving the critical role of global
noise features in high-precision generated image detection.
For example, on the DFFD dataset, using the GNFEM alone
yields an ACC of 98.97% and an AUC of 99.93%; on the
CIFAKE dataset, the ACC reaches 96.06% and the AUC is
99.10%.

Furthermore, on the CIFAKE dataset, the CFEM demon-
strates the strongest independent detection capability (ACC
= 96.99%, AUC = 99.47%), which fully validates its effect-
iveness in enriching color feature information and enhancing
the expression of color features. The CFEM module is able
to capture local inconsistencies within the color features more
comprehensively, providing strong support for the detection
of Al-generated images. Meanwhile, although the independ-
ent detection performance of the TFEM is relatively lower
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Table 9. Ablation experiment results of the SAFM’s number of
heads on the DFFD dataset.

num_heads ACC (%) AUC (%)
4 99.07 99.96
8 99.14 99.96
16 99.24 99.95
32 99.20 99.95

Table 10. Ablation experiment results of the SAFM’s number of
heads on the CIFAKE dataset.

num_heads ACC (%) AUC (%)
4 97.46 99.65
8 97.41 99.63
16 97.47 99.67
32 97.60 99.66

(CIFAKE: ACC = 92.93%, AUC = 97.92%), when combined
with the TFEM, the model achieves the highest ACC and AUC
in the three-feature fusion detection. This result indicates that
the TFEM plays an irreplaceable and important role in captur-
ing micro-texture anomalies in generated images.

Ultimately, the combination of the three feature extrac-
tion modules further enhances the overall detection capabil-
ity of the model, allowing it to achieve the best performance.
Specifically, on the DFFD dataset, when all features are com-
bined, the ACC reaches 99.24% and the AUC is 99.95%; on
the CIFAKE dataset, the ACC increases to 97.60% and the
AUC reaches 99.66%. This indicates that there is a signific-
ant complementary effect between the global noise pattern,
color features, and texture features, which together form the
key basis for detecting fake images, thereby further improving
the robustness and ACC of the detection system.

4.4.3. Validating the optimal number of heads in SAFM.  To
determine the optimal number of heads (num_heads) in the
SAFM, ablation experiments are conducted on the DFFD and
CIFAKE datasets. The specific experimental results are shown
in tables 9 and 10.

On the DFFD dataset, the ACC and AUC values for dif-
ferent numbers of attention heads are compared. The exper-
imental results show that when num_heads is set to 16,
the highest ACC (99.24%) and a high AUC (99.95%) are
achieved. Although the AUC value at num_heads is 32 is
the same as that at 16, the ACC is slightly lower (99.20%).
Therefore, on the DFFD dataset, the best performance is
achieved with 16 attention heads.

On the CIFAKE dataset, the model performs best with
num_heads is 32, achieving an ACC of 97.60% and an AUC of
99.66%. Although the AUC is slightly higher (99.67%) when
num_heads is 16, the ACC is lower (97.47%). Considering
both ACC and AUC, the best choice on the CIFAKE dataset is
32 attention heads.

L Self-Adaptive Feature
J—_’ Fusion Module (SAFM)

(a)

Figure 3. Schematic diagram of the SAFM and Concat fusion. (a)
The SAFM method. (b) The channel concatenation method.

—

Table 11. Comparison of SAFM and concat fusion methods on
DFFD and CIFAKE datasets.

Dataset Fusion method ACC (%) AUC (%)

DFFD Concat 99.15 99.89
SAFM 99.24 99.95

CIFAKE Concat 97.56 99.64
SAFM 97.60 99.66

The experimental results indicate that the number of atten-
tion heads in SAFM significantly impacts model performance.
A reasonable number of attention heads enhances the model’s
ability to capture fine-grained interactions between sub-
features, enabling more effective feature fusion and improving
overall detection performance.

4.4.4. Verification of SAFM'’s effectiveness. To verify the
advantages of the SAFM over traditional fusion strategies,
comparative experiments are conducted on the DFFD and
CIFAKE datasets. The baseline method uses conventional
channel concatenation (Concat), where global noise, color,
and texture features are merged along the channel axis and
then passed to the classifier. The schematic diagrams of the
two fusion methods are shown in figure 3, with the left side (a)
illustrating fusion through the SAFM module and the right side
(b) showing fusion through traditional channel concatenation.
The specific experimental results are presented in table 11.
The experimental results show that, compared to the tradi-
tional channel concatenation fusion method, SAFM achieves
improvements in both the ACC and the AUC. On the DFFD
dataset, even when the model performance is close to satura-
tion (ACC > 99%), SAFM still manages to further enhance
both the ACC and the AUC, fully demonstrating its effect-
iveness in capturing and fusing complementary information
from different sub-features. It also has the ability to adapt-
ively adjust the weight distribution of sub-features, optimizing
overall detection performance. On the CIFAKE dataset, due
to the inclusion of high-fidelity images generated by diffusion
models, the original resolution is relatively low, and the differ-
ences between real and fake samples are very subtle, making
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Table 12. Comparison of our method and other approaches in cross-dataset experiments.

DFFD to CIFAKE CIFAKE to DFFD AVG (%)
Method ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%)
Vision Transform-T (2020)  47.89 43.98 44.13 50.42 46.01 47.20
Swin Transform-T (2021) 46.05 40.50 67.69 50.58 56.87 45.54
CovNexT-B (2022) 43.11 38.11 71.57 47.08 57.34 42.60
DeiT-B (2020) 45.52 39.92 73.48 41.45 59.50 40.69
AIDE (2024) 46.97 37.06 39.59 46.90 43.28 41.98
FreDect (2020) 42.14 42.19 42.13 66.19 42.14 54.19
GramNet (2020) 50.02 43.11 75.35 45.10 62.69 44.11
LGrad (2023) 37.43 32.81 47.95 38.72 42.69 35.77
Ours 52.72 51.32 76.52 59.54 64.62 55.43

the detection task more challenging. Although the perform-
ance improvement is relatively small in this case, the SAFM
still outperforms the traditional channel concatenation fusion
method, further validating its ability to capture and fuse subtle
features when handling high-difficulty image data.

4.5. Cross-dataset experiments

To evaluate the model’s generalization ability to unseen gen-
erative models, we conducted cross-dataset experiments by
training on the DFFD dataset and testing on the CIFAKE data-
set, as well as training on CIFAKE and testing on DFFD.
The detailed results are presented in table 12. In the table, the
first column (‘DFFD to CIFAKE’) represents the performance
when the model is trained on DFFD and tested on CIFAKE,
while the second column (‘CIFAKE to DFFD’) shows the res-
ults when trained on CIFAKE and tested on DFFD. The third
column (‘Avg’) indicates the average performance across both
training-testing combinations, serving as an overall measure of
cross-dataset detection capability. We primarily focus on this
average metric to assess the model’s generalization perform-
ance in cross-dataset scenarios.

It is worth noting that, compared to the within-dataset
experimental results, the performance in cross-dataset exper-
iments shows a noticeable decline. This can be attributed
to several key factors. First, there is a significant difference
in image resolution: images in the DFFD dataset are gener-
ally high-resolution, whereas those in the CIFAKE dataset
are extremely low-resolution (32 x 32 pixels), which severely
limits the amount of available information and greatly con-
strains the model’s ability to perceive fine-grained artifact
features, thereby impacting its classification performance.
Second, there is a fundamental difference in the generation
methods between the two datasets. The DFFD primarily con-
tains images generated by GAN-based models, while the
CIFAKE mainly consists of images produced by diffusion
models such as the Stable Diffusion. These different gener-
ative mechanisms lead to domain-specific differences in arti-
fact types and texture patterns, making it difficult for the dis-
criminative patterns learned during training to transfer effect-
ively across datasets. Lastly, the semantic categories of the

images differ entirely. The DFFD focuses on human face
images, whereas the CIFAKE includes a wide variety of com-
mon object categories. This semantic-level inconsistency fur-
ther increases the difficulty of cross-domain generalization.

Nevertheless, under such a challenging cross-distribution
scenario, our proposed model still achieves the highest scores
in both Avg ACC and Avg AUC, clearly demonstrating its
strong generalization ability and robustness in the face of mul-
tiple challenges, including unseen generative models, signific-
ant resolution gaps, and semantic domain discrepancies.

4.6. Robustness analyzes

In real-world applications, images often undergo unforeseen
perturbations during dissemination and interaction, posing sig-
nificant challenges for the detection of Al-generated images.
To evaluate the robustness of different detection methods
under such potential distortions, this study adopts three com-
mon and impactful types of image degradation: JPEG com-
pression (with quality factors Q = 70 and 90), Gaussian blur
(o =2.0), and image downsampling (scaling the image to one-
quarter of its original width and height, » = 0.25). Robustness
experiments were conducted on both the DFFD and CIFAKE
datasets. Tables 13 and 14 present the robustness results under
intra-dataset settings (training and testing on the same data-
set), while tables 15 and 16 report the results of cross-dataset
robustness evaluations (training on one dataset and testing on
the other). To comprehensively assess the overall robustness of
each method across various perturbation scenarios, the average
performance (Avg ACC and Avg AUC) across all distortion
types is used as the primary evaluation metric.

In this set of experiments, our method continues to demon-
strate superior performance, achieving the highest average
ACC and AUC scores among all methods. Among these met-
rics, ACC serves as a core indicator of the model’s classifica-
tion capability and more directly reflects its effectiveness and
reliability in practical applications. Particularly in scenarios
with balanced positive and negative samples, ACC provides a
more faithful reflection of the model’s decision-making ability
near classification boundaries, making it a more critical per-
formance metric for real-world deployment.
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Table 13. Robustness comparison of our method and other approaches trained and tested on the DFFD dataset.

JPEG(Q = 70) JPEG(Q = 90) Blur(c =2.0) Downsampling(r = 0.25) Avg
Method ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%)
Vision Transform-T (2020) 94.88 98.36 95.49 98.68 94.48 98.49 93.97 98.41 94.71 98.49
Swin Transform-T (2021) 93.21 97.92 95.97 98.77 90.02 98.25 90.79 98.40 92.50 98.34
CovNexT-B (2022) 96.40 99.44 96.78 99.59 95.60 99.41 95.31 98.29 96.02 99.18
DeiT-B (2020) 96.28 99.29 96.28 99.30 96.31 99.30 96.30 99.30 96.29 99.30
AIDE (2024) 94.79 99.97 97.86 99.79 91.16 98.35 94.56 98.41 94.59 99.13
FreDect (2020) 95.96 98.08 96.26 98.72 95.99 93.81 95.24 97.81 95.86 97.11
LGrad (2023) 96.16 99.01 96.30 99.31 93.98 98.51 87.61 98.15 93.51 98.75
Ours 97.42 99.73 97.21 99.81 97.22 99.65 96.42 99.32 97.07 99.63

Table 14. Robustness comparison of our method and other approaches trained and tested on the CIFAKE dataset.

JPEG(Q = 70) JPEG(Q = 90) Blur(c =2.0) Downsampling(r = 0.25) Avg
Method ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%)
Vision Transform-T (2020) 90.77 96.81 90.72 96.75 71.70 82.70 71.26 81.31 81.11 89.39
Swin Transform-T (2021) 94.57 98.83 94.52 98.86 64.49 78.22 65.05 78.56 79.66 88.62
CovNexT-B (2022) 96.52 99.55 96.84 99.56 62.41 77.77 66.79 80.76 80.64 89.41
AIDE (2024) 96.74 99.48 96.73 99.49 72.54 82.50 68.82 76.22 83.71 89.42
FreDect (2020) 89.13 95.91 88.65 95.74 50.21 54.75 48.94 49.89 69.23 74.07
GramNet (2020) 96.62 99.57 96.99 99.59 63.26 72.67 63.41 72.72 80.07 86.14
LGrad (2023) 93.65 98.36 93.73 98.42 50.93 50.99 51.17 52.73 72.37 75.13
Ours 97.28 99.65 97.50 99.64 73.77 82.55 69.46 77.98 84.50 89.96

Table 15. Cross-dataset robustness comparison of our method and other approaches trained on the DFFD dataset and tested on the CIFAKE
dataset.

JPEG(Q = 70) JPEG(Q = 90) Blur(c =2.0)  Downsampling(r = 0.25) Avg
Method ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%)
Vision Transform-T (2020) 47.40 43.24 48.54 4451 50.57 51.46 51.03 51.97 49.39 47.80
Swin Transform-T (2021)  46.06 40.99 46.85 41.27 34.51 29.63 36.13 28.98 40.89 3522
CovNexT-B (2022) 43.63 35.53 44.46 39.22 39.91 36.02 37.61 33.55 41.40 36.08
DeiT-B (2020) 45.50 39.77 45.90 40.46 45.27 43.11 4491 42.59 45.40 41.48
AIDE (2024) 47.13 36.00 47.12 37.00 41.31 37.15 41.78 38.55 44.34 37.18
FreDect (2020) 42.29 42.49 41.55 41.24 50.00 53.31 50.00 52.73 45.96 47.44
GramNet (2020) 49.87 43.03 50.14 43.20 50.01 43.55 50.00 43.99 50.01 43.44
LGrad (2023) 37.25 32.18 50.01 50.64 50.01 50.31 50.01 50.63 46.82 45.94
Ours 52.74 51.33 52.61 51.13 51.36 54.47 50.13 53.72 51.71 52.66

Table 16. Cross-dataset robustness comparison of our method and other approaches trained on the CIFAKE dataset and tested on the DFFD
dataset.

JPEG(Q = 70) JPEG(Q = 90) Blur(c =2.0) Downsampling(r = 0.25) Avg
Method ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%)
Vision Transform-T (2020) 44.31 50.59 44.15 50.35 63.97 63.38 68.11 65.11 55.14 57.36
Swin Transform-T (2021) 67.69 50.50 67.76 50.64 71.78 54.72 72.78 55.66 70.00 52.88
CovNexT-B (2022) 71.54 47.06 71.61 47.17 73.63 50.16 74.02 50.84 72.70 48.81
DeiT-B (2020) 73.48 41.40 73.50 41.54 74.85 43.15 75.14 43.48 74.24 42.39
AIDE (2024) 39.01 41.34 36.00 38.75 37.76 52.57 45.16 59.51 39.48 48.04
FreDect (2020) 39.32 67.21 43.28 68.72 28.38 31.49 25.22 71.96 34.05 59.85
GramNet (2020) 75.24 44.15 72.56 44.12 76.90 42.77 77.05 41.14 75.44 43.05
LGrad (2023) 33.47 52.26 51.99 48.34 33.45 52.25 61.56 54.01 45.12 51.72

Ours 76.55 59.88 76.56 59.42 77.52 59.91 77.42 60.24 77.01 59.86
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Meanwhile, we introduce AUC as a supplementary metric
to evaluate the overall ranking capability of the model under
varying decision thresholds. Specifically, AUC measures the
extent to which the model can rank positive samples ahead of
negative ones. Therefore, in scenarios with imbalanced sample
distributions or ambiguous class boundaries, AUC provides
a useful reference for assessing the model’s discriminative
ability.

However, it is important to note that a high AUC does not
necessarily indicate strong classification performance. Since
AUC is threshold-independent, a model may still achieve a
high AUC even when many samples near the decision bound-
ary are misclassified, as long as the overall ranking is roughly
correct. In particular, under the balanced positive and negative
sample setting in this study, frequent misclassifications around
the boundary often suggest that the learned decision function
is not sufficiently sharp, making it difficult to achieve stable
and accurate predictions—ultimately compromising perform-
ance in real-world applications. This issue is not reflected by
the AUC metric but is clearly captured by ACC. For instance,
although FreDect achieves a relatively high AUC in table 15,
its ACC is significantly lower, indicating that it performs
poorly near decision boundaries. This suggests that the model
fails to capture fine-grained features of borderline samples
and is vulnerable to noise perturbations. Poor performance on
such samples directly leads to a drop in overall ACC, thereby
undermining the model’s reliability and applicability in prac-
tical tasks. Therefore, ACC provides a more faithful reflec-
tion of the model’s real-world classification performance and
should be regarded as the primary metric for evaluating model
effectiveness.

In contrast, our method not only maintains strong rank-
ing capability in terms of average AUC, but also achieves
the highest performance in average ACC, indicating that the
model makes more stable and reliable classification decisions.
This is particularly valuable in real-world applications where
tolerance for misclassification is low. Therefore, while AUC
offers a comprehensive view of a model’s discriminative abil-
ity, ACC remains the key metric for evaluating practical effect-
iveness. This highlights the core advantage of our approach.

In the robustness experiments conducted on the DFFD and
CIFAKE datasets, a more noticeable performance drop was
observed on the CIFAKE dataset. This is primarily due to the
extremely low image resolution in CIFAKE, with each image
being only 32x32 pixels, which severely limits the amount
of useful information. When such low-resolution images are
further degraded by operations like Gaussian blur and down-
sampling, critical visual details and features are significantly
diminished and blurred, substantially increasing the difficulty
of the detection task and consequently degrading detection
performance.

In contrast, the DFFD dataset consists mostly of high-
quality, high-resolution images that preserve richer texture,
structural, and artifact information, making the detection task
relatively easier to perform. On this dataset, our method
achieves the highest scores in both average ACC and AUC,
clearly demonstrating the model’s superior detection capabil-
ity in high-quality image scenarios.

Table 17. Comparison of our method and other approaches in terms
of efficiency and performance.

FLOPS Params Latency
Method (GFLOPS) M) (ms)
Vision Transform-T(2020) 16.86 85.65 10.76
Swin Transform-T(2021) 7.11 27.50 18.25
CovNexT-B(2022) 20.05 85.65 15.94
DeiT-B(2020) 16.86 85.68 13.82
AIDE(2024) 225.69 893.54 57.42
FreDect(2020) 5.40 23.51 17.55
LGrad(2023) 5.39 23.51 20.66
Ours 4.10 12.26 10.50

More importantly, under the extreme conditions of the
CIFAKE dataset—characterized by low resolution and strong
perturbations—our method still demonstrates a significant
advantage, achieving the highest average ACC and AUC
among all methods and outperforming all baseline models
by a notable margin. This result indicates that our proposed
approach not only performs well under ideal conditions but
also exhibits strong robustness and generalization capabilities
in challenging scenarios involving severe image distortion and
information loss.

4.7 Analysis of model efficiency and deployability

To evaluate the model’s efficiency in practical applications, we
compared our model with several baseline methods in terms of
the number of parameters, FLOPs (floating-point operations),
and inference latency. The detailed experimental results are
presented in table 17, which shows the relevant metrics for
each model.

The experimental results show that our model exhibits
excellent computational efficiency, with a relatively low num-
ber of parameters (12.26 M) and FLOPs (4.10 GFLOPS). In
particular, when compared to baseline methods such as AIDE
(2024) and ConvNeXt-T-B (2022), it demonstrates a clear
computational advantage. This indicates that despite having
fewer parameters, our model is still capable of maintaining
strong detection performance while offering promising poten-
tial for real-world deployment.

5. Conclusion

In this paper, the MSAFNet method is proposed. The GNFEM
captures global noise patterns, addressing limitations in local
block analysis. The TFEM extracts subtle texture anomalies,
enriching feature representation. The CFEM improves color
feature expression by converting images into multiple color
spaces and concatenating channels, revealing cross-channel
dependencies and providing richer discriminative cues. The
SAFM enables efficient sub-feature integration by optimiz-
ing fusion ratios and capturing complementary relationships
among sub-features. Experimental results on the DFFD and
CIFAKE datasets demonstrate that the proposed MSAFNet
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achieves comparable ACC in contrast to other state-of-the-art
methods.

In the future, we will focus on developing theoretic-
ally grounded modeling mechanisms for Al-generated image
forgery fingerprints, and designing more efficient multi-
scale feature fusion strategies, thereby further enhancing the
model’s generalization ability and interpretability in complex
scenarios.
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