
Academic Editors: Fasheng Zhou

and Jing Qiu

Received: 19 August 2025

Revised: 16 September 2025

Accepted: 19 September 2025

Published: 25 September 2025

Citation: Niu, S.; Zhang, X.; Wang,

S.; Liao, K.; Zhang, B.; Zou, G. A–ESD:

Auxiliary Edge-Server Deployment

for Load Balancing in Mobile Edge

Computing. Mathematics 2025, 13,

3087. https://doi.org/10.3390/

math13193087

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A–ESD: Auxiliary Edge-Server Deployment for Load Balancing
in Mobile Edge Computing
Sen Niu 1 , Xuewei Zhang 1, Simin Wang 1, Kaili Liao 1,*, Bofeng Zhang 1,2 and Guobing Zou 3

1 School of Computer and Information Engineering, Institute for Artificial Intelligence, Shanghai Polytechnic
University, Shanghai 201209, China; niusen@sspu.edu.cn (S.N.); xwzhang@sspu.edu.cn (X.Z.);
smwang@sspu.edu.cn (S.W.); bfzhang@sspu.edu.cn (B.Z.)

2 School of Computer Science and Technology, Kashi University, Kashi 844000, China
3 School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;

gbzou@shu.edu.cn
* Correspondence: klliao@sspu.edu.cn

Abstract

In recent years, the deployment of edge servers has attracted significant research interest,
with a focus on maximizing their utilization under resource constraint to improve overall
efficiency. However, most existing studies concentrate on initial deployment strategies,
paying limited attention to approaches involving incremental expansion. As user demands
continue to escalate, many edge systems are facing overload situations that hinder their
ability to meet performance requirements. To tackle these challenges, this paper introduces
an auxiliary edge-server deployment strategy designed to achieve load balancing across
edge systems and alleviate local server overloads. The problem is herein referred to as the
Auxiliary Edge Server Deployment (A–ESD) problem, and the aim is to determine the opti-
mal deployment scheme for auxiliary edge servers. A–ESD is modeled as a multi-objective
optimization problem subject to global constraints and is demonstrated to be NP-hard. An
enhanced genetic algorithm called LBA–GA is proposed to efficiently solve the A–ESD
problem. The algorithm is designed to maximize overall load balance while minimizing
total system delay. Extensive experiments conducted on real-world datasets demonstrate
that LBA–GA outperforms existing methods, delivering superior load balancing, reduced
latency, and higher cost-effectiveness.

Keywords: load balancing; edge computing; edge server deployment; genetic algorithm

MSC: 68W50

1. Introduction
With the rapid advancement of network communication technologies and the Internet

of Things (IoT), the volume of data generated on the Internet is experiencing explosive
growth. According to IDC projections, the global datasphere is expected to reach 175ZB by
2025, with this value representing more than a five-fold increase over the 33ZB recorded
in 2018 [1]. Cloud computing, as an emerging computational paradigm, offers significant
advantages in terms of efficiency, flexibility, and scalability. It effectively supports the
processing and storage of massive datasets, thereby injecting new vitality into Internet
development. However, with the widespread adoption of IoT devices and the growing
demand for real-time processing, latency has become a critical bottleneck that limits the
applicability of cloud computing in latency-sensitive scenarios.

Mathematics 2025, 13, 3087 https://doi.org/10.3390/math13193087

https://doi.org/10.3390/math13193087
https://doi.org/10.3390/math13193087
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6259-5463
https://orcid.org/0000-0002-5001-1096
https://doi.org/10.3390/math13193087
https://www.mdpi.com/article/10.3390/math13193087?type=check_update&version=1


Mathematics 2025, 13, 3087 2 of 21

To mitigate this challenge, edge computing has emerged as a promising complemen-
tary paradigm. By relocating computation and services from the centralized cloud to
the network edge—closer to end users and data sources [2]— edge computing facilitates
localized data processing and analysis. This proximity considerably reduces transmission
latency and bandwidth consumption while improving data security and privacy [3]. As
a result, edge computing is increasingly regarded as a vital extension of cloud comput-
ing, and their integrated application offers a more comprehensive solution for modern
information-processing requirements.

In recent years, edge computing has made substantial progress and has been deployed
in numerous domains [4]. However, several challenges remain. Edge servers are typically
constrained by cost, energy consumption, and computational capacity. Considering the aim
of maximizing their utilization under such limitations, the Edge-Server Deployment (ESD)
problem has attracted significant research attention [5,6]. A primary objective in tackling
the ESD problem is to optimize the placement of edge servers based on user distribution,
thereby improving service efficiency and reducing user-perceived latency.

Numerous approaches have been proposed to address the ESD problem. Researchers
have developed various deployment strategies, often modeling the task as an optimiza-
tion problem under specific performance constraints [7–9], such as minimizing latency,
maximizing coverage, reducing energy consumption, or lowering costs. Metaheuristic
algorithms [10–12] and enhanced genetic algorithms [13–15] are commonly used to identify
optimal or near-optimal deployment configurations.

Despite these efforts, existing methods exhibit several limitations. First, most ESD
strategies focus primarily on initial server placement, overlooking the potential for server
overload as user requests increase over time, a phenomenon that can severely impact the
user experience. Second, many current approaches rely on offloading strategies to alleviate
load, thus failing to fundamentally address the shortage of computational resources. Finally,
the prevailing deployment methods tend to prioritize latency and cost optimization, often
neglecting the crucial objective of achieving system-wide load balance under high-demand
conditions.

To enhance user experience and mitigate resource shortages, this paper explores
the deployment of auxiliary edge servers as a scalable expansion of existing edge
infrastructure [16]. Compared to conventional edge nodes, auxiliary edge servers fea-
ture a smaller communication radius and reduced capacity, resulting in lower cost and
greater deployment flexibility. This expansion strategy is formalized as the Auxiliary
Edge Server Deployment (A–ESD) problem. In contrast to prior work, our approach ex-
plicitly incorporates load balancing into the problem formulation. To tackle the NP-hard
A–ESD problem effectively, we propose a novel genetic algorithm (GA)-based method
named LBA–GA that efficiently identifies high-quality approximate solutions. Our method
conducts a comprehensive analysis of users and edge servers within the system, incorpo-
rating user-demand satisfaction, server load levels, and connectivity conditions. It subse-
quently determines the optimal placement for auxiliary edge servers to effectively alleviate
load pressure.

The main contributions of this paper are summarized below

• We formalize the A–ESD problem as a constrained multi-objective optimization model
with an emphasis on load balancing, and establish its NP-hardness.

• We propose LBA–GA, an enhanced genetic algorithm, to efficiently identify optimal
deployment strategies for auxiliary edge servers.

• We conduct extensive experiments on widely used real-world datasets to evaluate the
performance of LBA–GA. Results demonstrate that our approach outperforms existing
methods in achieving better load balance, lower latency, and higher cost-effectiveness.



Mathematics 2025, 13, 3087 3 of 21

The remainder of this paper is organized as follows. Section 2 provides a motivational
example for this study. Section 3 introduces the system model and problem formulation.
Section 4 presents the proposed algorithm and proves the NP-hardness of the A–ESD
problem. Section 5 discusses experimental results and analysis. Related work is reviewed
in Section 6. Finally, Section 7 concludes the paper and outlines future research directions.

2. Motivating Example
Figure 1 presents an example of the Auxiliary Edge-Servers Deployment scenario.

There is an edge system that consists of a set of edge servers S = {s1, s2, s3} and a set of
users U = {u1, u2, . . . , u8}. Every user can access edge servers in the coverage area. Please
note that the computing and storage resources on the edge server are limited. Each user
has many request tasks, all of which require some amount of resources.

Figure 1. Example edge system.

Existing studies of the ESD problem assume that no edge server exists in the current
region. Then, they choose the deployment locations of edge servers to ensure the low-
est overall latency for all users. However, in practice, a certain number of edge servers
have already been deployed in many regions. The assumption of starting completely
from scratch may not reflect reality. Furthermore, most of the research on load bal-
ancing uses resource scheduling to satisfy large numbers of user requests. When an
edge server is overloaded, it will send the user’s request to other free edge servers for
processing [17–19]. While these approaches can alleviate the overload on edge servers to
some extent, they do not work when all edge servers (s1, s2, and s3) are overloaded. There
are then no devices in the system with sufficient computational resources. Under those
conditions, it becomes necessary to add new computational resources.

However, the addition of computational resources increases costs, and the timing and
circumstances of edge-server overloads are variable. Thus, the problem of how to add new
computational resources and the extent to which additional resources should be added are
important research questions.

Based on the edge system, an auxiliary edge server, denoted as a1, is integrated to
facilitate communication with users and offload requests, as shown in Figure 1. The
auxiliary edge server a1 can communicate with users u3, u5 and u6. Consequently, these
users are able to offload their requests to a1, thus reducing the load on the original edge



Mathematics 2025, 13, 3087 4 of 21

servers that were processing these requests and adjusting the overall load distribution. It
follows that the location and number of auxiliary edge servers affect the users they can
communicate with, which in turn influences the overall load level. Therefore, examining
the location and number of auxiliary edge servers is imperative if one is to determine the
optimal placement and quantity for overall load balancing in the system.

3. System Model
3.1. Edge System

The main focus of this research is the auxiliary edge-server deployment problem, as
presented within the context of pre-existing edge systems. The relevant symbols are shown
in Table 1. An edge system consists of a set of edge servers and users.

Table 1. Symbol table.

Symbol Definition

S = {s1, s2, . . . , sm} Set of edge servers
(Xmax, Ymax) Maximum values of the system on the X and Y axes

U = {u1, u2, . . . , un} User set
Possk = (Xsk , Ysk ) Position of edge server sk

LS = {Ls1 , Ls2 , . . . , Lsm} Set of edge server load levels
lsk = {lmax

sk
, lnow

sk
} Max and current loads of edge server sk

Rsk Communication range of edge server sk
(Xuk , Yuk ) Position of user uk

Q = {Q1, Q2, . . . , Qn} Set of user request demands
A = {a1, a2, . . . , ap} Set of auxiliary edge servers
Posak = (Xak , Yak ) Position of auxiliary edge server ak

LA = {La1 , La2 , . . . , Lam} Set of auxiliary edge server load levels
lak = {lmax

ak
, lnow

ak
} Max and current loads of auxiliary edge server ak

Rak Communication range of auxiliary edge server ak
plim Max number of auxiliary edge servers

d = {d1, d2, . . . , dn} Delays between users and their request destinations
D = {D1, D2, . . . , Dn} Distances between users and their request destinations

Laa Overload critical load level of edge servers

Definition 1 (Edge Users ). The set of edge users is defined as U = {u1, u2, . . . , un}. For an edge
user, their geographical position is defined by the coordinates uk = (Xuk , Yuk ).

Definition 2 (User Request). The set of user request demands is defined as
Q = {Q1, Q2, . . . , Qn}, corresponding to each edge user in the user set U = {u1, u2, . . . , un}.

In the initialization phase of the experiment, the values in set Q need to be assigned to
the corresponding users according to their indices. Users are permitted to dispatch these
requests to appropriate edge servers or auxiliary edge servers for processing based on the
actual conditions of the edge system or, alternatively, process them on their own devices.

Definition 3 (Edge servers). The set of edge servers is defined as S = {s1, s2, . . . , sm} . For
the edge server sk = {Possk , Rsk , lsk}, its geographical position is defined by the coordinates
Possk =

(
Xsk , Ysk

)
. Its communication range is defined as Rsk , and the set of its maximum load

capacity and current load is defined as lsk = {lmax
sk

, lnow
sk
}.

For an edge server si, which has a communication range Rsi , a maximum load capacity
lmax
si

, and a current load lnow
si

, a user uj that can communicate with si must satisfy the
following conditions: the geospatial distance between uj and si must be no greater than the



Mathematics 2025, 13, 3087 5 of 21

communication range, and the remaining load capacity of si must be sufficient to meet the
current request demand of the user. That is,√(

Xsi − Xuj

)2
+

(
Ysi −Yuj

)2
≤Rsi (1)

lnow
si

+ Qj≤lmax
si

(2)

The main focus of the A–ESD Problem in this paper is to deploy auxiliary edge servers
in existing edge systems to improve load balancing. Therefore, it is necessary to define the
auxiliary edge servers themselves.

Definition 4 (auxiliary edge servers). The set of auxiliary edge servers to be deployed is defined
as A = {a1, a2, . . . , ap}. For an auxiliary edge server ak = {Posak , Rak , lak}, geographical position
is defined by the coordinates Posak = (Xak , Yak ). Its communication range is defined as Rak , and
the set of its maximum load capacity and current load is defined as lak = {lmax

ak
, lnow

ak
}.

In an approach similar to that used for the edge servers, for an auxiliary edge server ai,
which has a communication range Rai , a maximum load capacity lmax

ai
, and a current load

lnow
ai

, a user uj capable of communicating with ai must satisfy the following conditions: the
geospatial distance between ai and uj must be no greater than the communication range,
and the residual load capacity of ai must be sufficient to meet the current request demand
of the user. That is, √(

Xai − Xuj

)2
+

(
Yai −Yuj

)2
≤Rai (3)

lnow
ai

+ Qj ≤ lmax
ai

(4)

The number of auxiliary edge servers is part of the optimization objective and is not
predetermined. We initially posit that the number of auxiliary edge servers is p , which will
be a variable to be determined during the process. To ensure the smooth operation of the
algorithm, it is prudent to establish a maximum threshold for the number of deployable
auxiliary edge servers, defined as plim. This limit should satisfy the following condition:

p ≤ plim (5)

During the algorithm’s execution, any unused auxiliary edge servers will be desig-
nated as idle, and the set of auxiliary edge servers will be capped at plim elements. This
ensures the stability and efficiency of the algorithm’s execution.

When an auxiliary edge server ak is deployed, its coordinates (Xak , Yak ) must not
exceed the boundaries of the study area. The lower-left boundary point of the study area is
defined as (0, 0). That is, {

0 ≤ Xak≤Xmax

0 ≤ Yak ≤ Ymax
(6)

where (Xmax, Ymax) represents the coordinates of the boundary point farthest from the initial
point in the study area.

3.2. Load Balancing- and Delay-Aware Model

This paper establishes optimizing load balancing and delay as the objectives of
the model.

To effectively address these metrics, it is necessary to quantify their specific perfor-
mance based on the user-offloading process, thereby deriving concrete values that can
measure load balancing and delay.



Mathematics 2025, 13, 3087 6 of 21

User requests to the edge system should, whenever feasible, be processed by edge
servers. The edge server must fall within the communication range of the user and possess
ample idle resources to support request offloading. To achieve better load balancing, it is
imperative for users to assess the load levels of edge servers to ascertain whether they are
operating beyond capacity, while ensuring that offloading actions contribute positively to
the overall load distribution.

User requests are typically routed to the edge server exhibiting the lowest current load
level that is within the communication range, thereby enhancing overall load distribution
and reducing the incidence of overloading on edge servers. Therefore, it is imperative
to precisely delineate the load thresholds of edge servers. Additionally, assessing server-
overload status constitutes a critical aspect; hence, establishing unambiguous criteria for
overload conditions is essential.

Definition 5 (Load level). The load levels of edge server sk and auxiliary edge server ak are defined
as Lsk and Lak , respectively, representing the percentage of the current load relative to the total load.
The critical load level for determining whether an edge server or auxiliary edge server is overloaded
is defined as Laa.

The load levels of the edge server Lsk and the auxiliary edge server Lak can be
expressed as follows:

Lsk =
lmax
sk
− lnow

sk

lmax
sk

× 100% (7)

Lak =
lmax
ak
− lnow

ak

lmax
ak

× 100% (8)

In this paper, load levels are quantified as percentages to mitigate potential biases in
the assessment of actual load levels arising from the heterogeneity of edge servers and
auxiliary edge servers.

To reduce the number of auxiliary edge servers deployed, when the resources of the
edge system are sufficient, users should refrain from offloading requests to auxiliary edge
servers. Only when all edge servers within the user’s communication range are overloaded
will users consider offloading requests to auxiliary edge servers. Specifically, when the
load level of an edge server reaches Laa, that server is deemed overloaded and ceases
to accept new requests from users. If, after attempting to find auxiliary edge servers for
offloading, a user still cannot find any available devices and if the overloaded edge server
still possesses the capacity to process the request, the request will be returned to that
server for processing. This is because, in the absence of available edge servers, users must
perform local computations, which significantly degrades the user experience. As this could
potentially impair overall load distribution, such a situation should be avoided as much
as possible.

During the offloading process, this paper utilizes the system’s overall standard devia-
tion Std and the average distance D̄ between users and the devices to which they offload
requests to measure system performance metrics, specifically the overall load-balancing
level and the overall delay.

Currently, the standard deviation of edge-server loads is frequently employed as an
optimization criterion [6,20]. A lower value indicates a more balanced load distribution
within the edge system. Therefore, the standard deviation can be expressed as follows:

Std =

√
∑m

i=1(Lsi − L̄s)
2

m
(9)



Mathematics 2025, 13, 3087 7 of 21

where L̄s represents the average load ratio of all edge servers.
Employing the distance D as a metric for delay is a common approach in the field of

edge-server deployment [13,21]. The following will demonstrate the rationality of using
the average distance D̄ between users and the devices to which they offload requests to
measure delay.

The delay between user ui and the device to which it offloads tasks can be calculated
as follows:

di =
Qi
ci

(10)

where ci denotes the data-transmission rate between user ui and the edge server sj or auxil-
iary edge server aj to which it offloads requests. For a fixed user ui, Qi is a predetermined
value and remains constant, so di is related only to ci and they are negatively correlated.
The signal-transmission rate is influenced by numerous interference conditions, making
it challenging to express this value with a single formula. These interference factors can
be collectively considered, and under an ideal assumption, the calculation formula can be
expressed as follows:

ci = B log2

(
1 +

gi pi
N

)
(11)

where B denotes the signal bandwidth, pi denotes the transmission power of user ui, and
N denotes the sum of all interferences and noise. In the research scenario of this paper, N
can be considered a fixed value. Therefore, for a fixed user ui, all these variables remain
constant, and it can be concluded that ci is related only to gi and that they are positively
correlated. gi denotes the channel gain between user ui and the device to which it offloads
tasks. According to the 3GPP technical report, the calculation formula can be expressed
as follows:

gi =
g0

(Di)2 (12)

where g0 denotes the reference channel gain at a distance of 1 m. For a fixed user ui, g0

remains constant throughout the experiment. Therefore, hi is solely dependent on the
distance Di between user ui and the device to which it offloads requests, and they are
negatively correlated. Combining the derivations from Equations (10) and (11), it can be
concluded that the delay di is solely a function of the distance Di and that they are positively
correlated. Therefore, this distance can be used as a standard for measuring the delay of a
single user.

The overall system delay can be obtained by averaging the delays of all users. The
average distance D̄ between users and the devices to which they offload requests can be
expressed as follows:

D̄ =
∑n

i=1 Di

n
(13)

3.3. A–ESD Problem

Definition 6 (Auxiliary Edge-Server Deployment Problem). Based on the derivations from the
preceding sections, the A–ESD problem to be studied in this paper can be defined as a quadruple
⟨U, Q, S, A⟩ where

U = {u1, u2, . . . , un} is the set of users.
Q = {Q1, Q2, . . . , Qn} is the set of user request demands
S = {s1, s2, . . . , sm} is the set of edge servers.
A = {a1, a2, . . . , ap} is the set of auxiliary edge servers.



Mathematics 2025, 13, 3087 8 of 21

4. Approach
4.1. Optimization Model

Integrating the insights gleaned in the preceding sections, the optimization model for
the A–ESD problem in this paper can be formulated as follows:

min

√
∑m

i=1(Lsi − L̄s)
2

m
(14)

min ∑n
i=1 Di

n
(15)

s.t.
p ≤ plim (16){

0 ≤ Xai ≤ Xmax

0 ≤ Yai ≤ Ymax
ai∈A (17)


√(

Xsi − Xuj

)2
+

(
Ysi −Yuj

)2
≤ Rsi uj∈Usi si∈S√(

Xai − Xuj

)2
+

(
Yai −Yuj

)2
≤ Rai uj∈Uai ai∈A

(18)

{
∑uj∈Usi

Qj ≤ lmax
si

si∈S

∑uj∈Uai
Qj ≤ lmax

ai
ai∈A

(19)

where Usi represents the set of users associated with the edge server si and Uai represents
the set of users associated with the auxiliary edge server ai.

Function (14) is the load-balancing optimization objective, which aims to minimize the
overall standard deviation of the edge-server loads. Function (15) is the delay optimization
objective, which aims to minimize the average distance between users and the devices
to which they offload tasks. Function (16) ensures that the number of deployed auxiliary
edge servers does not surpass the predefined maximum. Function (17) ensures that the
coordinates of the deployed auxiliary edge servers fall within the predefined boundaries.
Function (18) ensures that the distance between users and their offloading devices is within
the communication range. Function (19) ensures that users are prohibited from offloading
tasks to devices that have insufficient remaining capacity.

4.2. A–ESD Problem Hardness

The Auxiliary Edge Server Deployment (A–ESD) problem is NP-hard. Proof. We
establish this by a reduction from the classical capacitated k-median problem, which is
well known to be NP-hard [13]. The capacitated k-median problem is defined on a set of
clients U = u1, . . . , un, a set of candidate facilities F = f1, . . . , fm, capacity limits C f for
each facility f ∈ F, and a distance metric d(·, ·). The goal is to select at most k facilities such
that all clients are assigned to an open facility without violating capacity constraints while
minimizing the total assignment cost ∑u∈U d(u, f (u)). To reduce this problem to A–ESD,
we let the candidate auxiliary edge servers A correspond directly to the facilities F, while the
existing edge servers S are treated as fixed facilities with given residual capacities. The user
set U remains unchanged, with identical demand quantities Qj, and the communication
ranges are set to be sufficiently large that feasibility is governed solely by the capacity
constraints. Under this construction, any feasible solution of the capacitated k-median
problem with cost at most B yields an auxiliary deployment in A–ESD with no more than
p = k nodes that satisfies constraints (16)–(19) and achieves cost at most B; conversely,
any feasible A–ESD solution can be mapped back to a capacitated k-median solution with
equivalent feasibility and objective value. Since this reduction is clearly computable in



Mathematics 2025, 13, 3087 9 of 21

polynomial time, the NP-hardness of the capacitated k-median problem directly implies
that A–ESD is also NP-hard.

4.3. LBA–GA Method
4.3.1. Overview of LBA–GA Algorithm

The LBA–GA algorithm is an enhanced approach based on the genetic algorithm.
Genetic algorithms generate a random population for the problem and then encode this
population, resulting in encoded segments similar to chromosomes in biology. By ma-
nipulating these encoded segments and simulating the evolutionary processes guided
by a fitness function, the population is continuously optimized to obtain an approximate
optimal solution.

Traditional genetic algorithms exhibit limitations when applied to the A–ESD problem,
such as inappropriate configurations of the fitness function and insufficient responsiveness
to specific problem conditions. Hence, there is a compelling need to refine the genetic
algorithm to better address the A–ESD problem.

The pseudocode for the enhanced genetic algorithm, LBA–GA, is shown in
Algorithm 1. Firstly, the initial parameters are set; these include population size Npop, num-
ber of iterations Nit, crossover probability Pcr, and mutation probability Pmu (1), Then,
a random population of the specified size Npop is generated as the initial population (2).
Next, a fitness calculation is performed to obtain the necessary data and fitness values (3).
Before the maximum number of iterations is reached, each loop cycle involves selection (7),
crossover (8–10, 16–18), and mutation (11–15) operations. At the end of each iteration, a
fitness calculation (20) and selection-coefficient calculation (21) are performed. Based on
the fitness and selection coefficients, the probability of each individual in the population
entering the next generation is calculated (22). The next generation’s population is then
formed based on these probabilities and proceeds to the next iteration. Once the maximum
number of iterations has been reached, the individual with the highest fitness in the cur-
rent population is returned, and the approximate solution is obtained by decoding this
individual (23–25).

4.3.2. Generation Update of LBA–GA

During the initialization of the population, each individual is regarded as a set of
positions for auxiliary edge servers, constructed through the concatenation of the positions
of each node. This encompasses all pertinent details regarding the deployment positions
of the auxiliary edge servers, which are subsequently encoded into a binary chromosome
sequence.

In the fitness-calculation step, to obtain the required variables, auxiliary edge servers
should be deployed in the edge system according to the chromosome code. A single
offloading process is then performed, and data for various system variables are recorded.
Necessary data are extracted for subsequent calculations, and the data from the offloading
process are used to supplement and save the attributes of the auxiliary edge servers. In
this paper, the load-balancing level serves as the fitness metric and is represented as the
reciprocal of the standard deviation of the load levels of all edge servers. The formula can
be expressed as follows:

flb(Hi) =

√
m ∑m

j=1

(
Lsj − L̄s

)2

∑m
j=1

(
Lsj − L̄s

)2 (20)



Mathematics 2025, 13, 3087 10 of 21

Algorithm 1: Load balancing-based auxiliary edge-server deployment genetic
algorithm (LBA–GA)

Input: An A–ESD problem ⟨U, Q, S, A⟩
Output: The approximate solution Pos = {Posa1 , Posa2 , . . . , Posap}

1 Set parameters Npop, Nit, Pcr, Pmu ;
2 Initialize population H = {H1, H2, . . . , HNpop} randomly ;

3 Compute fitness:

4 flb(Hi) =

√
m ∑m

j=1(Lsj−L̄s)2

∑m
j=1(Lsj−L̄s)2 ;

5 for i = 1 to Nit do
6 Initialize H′ as next-generation set ;
7 for j = 1 to Npop do
8 Select individuals Hj and Hk randomly ;
9 if rand(0, 1) ≤ Pcr then

10 Perform crossover: (Hj, Hk)→ Hcr ;
11 Compute mutation coefficient Cmu ;
12 if rand(0, 1) ≤ Pmu · Cmu then
13 Perform mutation: Hcr → H′j ;

14 else
15 H′j ← Hcr ;

16 else
17 H′j ← Hj ;

18 Compute fitness of new population using flb(H′i ) ;
19 Compute selection coefficient Csel ;
20 Compute selection probability:

21 Psel,i =
flb(H′i )·Csel,i

∑
Npop
j=1 flb(H′j)·Csel,j

;

22 Generate next generation H based on Psel,i ;

23 Select best solution Hbest ← arg maxHi∈H flb(Hi) ;
24 Decode and return solution:
25 Pos = {Posa1 , Posa2 , . . . , Posap} from Hbest ;

To enhance the convergence velocity of the algorithm, in the crossover process, we
forgo the conventional random-crossover approach employed in genetic algorithms; in-
stead, the chromosome code is segmented based on the chromosome code correspond-
ing to each auxiliary edge server. The individuals Hj and Hk are decomposed into
Hj = {Hj,1, Hj,2, . . . , Hj,p} and Hk = {Hk,1, Hk,2, . . . , Hk,p}, as depicted in Figure 2. For
each corresponding pair of segments Hj,l and Hk,l , which correspond to auxiliary edge
servers aj,l and ak,l , the segment exhibiting a lower total delay for the user sets Uaj,l and
Uak,l is selected as the chromosome code segment post-crossover. That is,

Hcr
j,l =

Hj,l , ∑ DUaj,l
< ∑ DUak,l

Hk,l , ∑ DUaj,l
≥∑ DUak,l

(21)



Mathematics 2025, 13, 3087 11 of 21

...hj

aj,1

...

hj,1

...

Uj,1 aj,2

...

hj,2

...

Uj,2 aj,p

...

hj,p

...

Uj,p

...hk

ak,1

...

hk,1

...

Uk,1 ak,2

...

hk,2

...

Uk,2 ak,p

...

hk,p

...

Uk,p

Figure 2. Chromosome coding segmentation.

This ensures that the resulting offspring possess the superior-performing segment in
terms of total delay.

When the crossover process is enhanced with a focus on delay optimization, the
delay performance of the offspring chromosome code is optimized and thereby rapidly
converges to the optimal solution. By contrast, load balancing, which must be assessed
from a global perspective, is challenging to incorporate within local adjustments. To
prevent the algorithm from being excessively swayed by delay considerations, which could
potentially compromise the optimization of load balancing, an independent traditional
crossover probability P

′
cr is employed in the crossover operation. The chromosome code of

the offspring individual H
′

after crossover is defined as follows:

H
′
=

Hcr, 0 ≤ rand(0, 1) ≤ Pcr

H
′
cr, Pcr < rand ≤ P

′
cr

(22)

where Hcr denotes the offspring’s individual chromosome code obtained using the im-
proved crossover method proposed in LBA–GA, and H

′
cr denotes the offspring’s individual

chromosome code obtained using the traditional crossover method. When a random num-
ber meets the criteria for the traditional crossover probability yet fails to meet those for the
improved crossover probability, solely the traditional crossover method is applied. This
approach accelerates convergence while avoiding the risk of missing the optimal solution.

To broaden the search space and prevent premature convergence, the mutation process
is further refined. After the chromosome code based on auxiliary edge servers has been
segmented as Hcr

j = Hcr
j,1, Hcr

j,2, . . . , Hcr
j,p, a distinct mutation operation is applied to each

segment Hcr
j,k within the group. This entails randomly inverting a bit within the binary

representation to derive H
′
j,k. The resulting mutated segments are subsequently recombined

to constitute H
′

as a candidate for the subsequent generation.
However, this approach markedly increases the number of bits that can potentially be

mutated and the probability of mutation, thereby potentially resulting in an excessively
high mutation rate and thus impeding algorithmic convergence. To address this, a mutation-
adjustment coefficient Cmu is introduced. This coefficient is derived from the aggregate
standard deviation of each solution set, as follows:



Mathematics 2025, 13, 3087 12 of 21

Cmu = Cmu,0

√
∑m

i=1(Lsi − L̄s)
2

m
(23)

where Cmu,0 denotes the baseline mutation coefficient, a value established a priori. Adjust-
ing the mutation probability ensures that the likelihood of mutation for higher-performing
solutions is proportionally diminished. This approach guarantees that the algorithm,
in its pursuit of the optimal solution, sustains stability in convergence throughout the
execution process.

To account for the effects of latency and the count of auxiliary edge servers within
the algorithm’s deployment, a set of coefficients Csel is defined in the selection step of
the genetic algorithm. These coefficients are derived from the average latency across all
users within the system and the tally of auxiliary edge servers. The calculation formula is
as follows:

Csel = Csel,0
n

p ∑n
i=1 Di

(24)

where Csel,0 denotes the selection-balancing coefficient, which serves to correlate the number
of auxiliary edge servers and the average user latency into the same space. It is calculated as
follows:

Csel,0 = pmaxDmax (25)

where pmax denotes the maximum number of auxiliary edge servers among all individu-
als in the population and Dmax denotes the maximum latency among all individuals in
the population.

Csel serves as the novel weighting factor in the computation with the fitness set and is
subsequently normalized to determine the selection probability Psel,i for each individual:

Psel,i =
flb

(
H
′
i

)
Csel,i

∑
Npop
j=1 flb

(
H′j

)
Csel,j

(26)

Through the modulation of selection probabilities, the influence of delay and the
number of auxiliary edge servers deployed are manifested in the subsequent generation of
the population.

Upon the conclusion of all iterative processes, the chromosome of the fittest individual
in the final population is decoded to yield the auxiliary edge server positions, which
constitute the determined solution.

5. Experiments
5.1. Experimental Setup and Dataset

In order to verify the performance of LBA–GA, we evaluate its effectiveness and
efficiency experimentally. All experiments are conducted on a computer equipped with an
AMD Ryzen 7 6800H CPU, 16 GB RAM, and an NVIDIA GeForce RTX 3060 Laptop GPU.
Our approach, as well as the comparative methods, were implemented in Python 3.9.

The experiments are carried out on a public benchmarking dataset, the EUA dataset.
It contains 125 edge servers in the Melbourne CBD area in Australia, as shown in Figure 3.
The dataset records the latitude and longitude of edge servers and users. It has been used
extensively in existing studies. In alignment with the research scenarios for the A–ESD prob-
lem, user task data are synthesized following the Zipf distribution, and the communication
radius and maximum load capacity of edge servers are defined in the experiment.

To explore the effectiveness of the method in different situations, this paper employs
two distinct experimental configurations based on an existing dataset, depicting scenarios



Mathematics 2025, 13, 3087 13 of 21

of absolute and relative scarcity of edge system resources. and adjusts the number of
auxiliary edge servers deployable to reflect real-world constraints.

Figure 3. EUA dataset visualization.

5.2. Comparative Methods and Evaluation Metrics

To evaluate the performance of LBA–GA, we compare it with four competing
approaches.

• No-Aux: It does not use additional auxiliary edge servers.
• Random-B: It randomly deploys a number of auxiliary edge servers and selects the

servers with optimal performance.
• Trad-GA: It uses traditional genetic algorithms to solve the optimization problem.
• HE-GA [13]: It employs a genetic algorithm to find the optimal solution for the

deployment of edge servers by calculating the impact on communication.

In the experiments, we employ five evaluation metrics to compare and analyze
the results.

• Satisfiability (Sat): It represents a binary indicator used to ascertain whether the task
requirements of all users are satisfied.

Sat =

1, ∑n
j=1 Q

′
j = 0

0, ∑n
j=1 Q

′
j ̸=0

(27)

where Q
′
j represents the unprocessed task demand of user uj.

• Load-Balancing Optimization Rate (RaStd): It is measured by the standard deviation
reduction ratio to indicate the effectiveness of the method in terms of load balancing.

RaStd =
StdNA − StdM

StdNA
× 100% (28)

where StdNA represents the overall standard deviation of the No-Aux method and
StdM represents the overall standard deviation of the current method.

• Delay-Optimization Rate (RaD̄): It is measured by the reduction ratio of the mean
distance to indicate the effectiveness of the method in terms of delay.

RaD̄ =
D̄NA − D̄M

D̄NA
× 100% (29)



Mathematics 2025, 13, 3087 14 of 21

where D̄NA represents the overall average distance of the No-Aux method and D̄M

represents the overall average distance of the current method.
• Load-Balancing Optimization Rate per Node (Raper

Std): It is measured by the reduction
ratio of the standard deviation per node to indicate the cost-effectiveness of deploying
auxiliary edge servers for load-balancing optimization.

Raper
Std =

RaStd
p

(30)

• Delay optimization rate per node (Raper
D̄ ): It is measured by the reduction ratio of the

mean distance per node to indicate the cost-effectiveness of deploying auxiliary edge
servers for delay optimization.

Raper
D̄ =

RaD̄
p

(31)

5.3. Experiment Results and Analyses

In the experiment, the parameters are configured to achieve the optimal performance
for the competing methods. The user task demand set Q was simulated based on Zipf’s
law. The initial parameters were set as follows: Npop = 100, Nit = 100, Pcr = 0.7, P

′
cr = 0.8,

Pmu = 0.0003 and plim = 40. The selection criteria for the initial population size and
mutation rates are as shown in Figure 4a,b. We conducted 50 rounds of simulations on
Dataset 1 and Dataset 2, respectively. Then, the average value was taken as the final
experimental result.

(a) (b)

Figure 4. (a) Fitness-comparison curves for different population sizes. (b) Mutation rates.

5.4. Performance Impact of Parameters

Table 2 summarizes the experimental results on EUA Dataset 1 and Dataset 2 with
Laa = 0.8. The No-Aux method fails to satisfy all user demands. Random-B and HE–GA
utilize auxiliary servers but achieve only limited improvement due to the lack of a global
optimization mechanism. Trad–GA performs better in allocating tasks but shows weaker
cost-effectiveness in per-node metrics. In contrast, LBA–GA consistently achieves the
best results across all five metrics. Specifically, compared to Trad–GA, LBA–GA improves
RaStd by 2.19% and 3.22% and RaD̄ by 4.08% and 12.05% on the two datasets, respectively.
Furthermore, it achieves higher Raper

Std and RaD̄ demonstrating superior cost-effectiveness.
These results confirm that LBA–GA outperforms baselines both in overall performance and
in efficiency when deployment of auxiliary servers is limited.



Mathematics 2025, 13, 3087 15 of 21

Table 2. Experimental data sheet for EUA Dataset 1 and EUA Dataset 2 for the case where Laa = 0.8.

Methods
EUA Dataset 1 EUA Dataset 2

Sat RaStd RaD̄ Raper
Std Raper

D̄ Sat RaStd RaD̄ Raper
Std Raper

D̄

No-Aux 0 0 0 0 0 0 0 0 0 0

Random-B 0 29.58% 6.68% 1.56% 0.35% 0 28.59% 8.89% 1.51% 0.47%

HE-GA 0 24.64% 6.05% 1.45% 0.36% 0 33.46% 7.21% 2.39% 0.52%

Trad-GA 1 54.68% 8.82% 2.05% 0.33% 1 62.48% 9.46% 3.29% 0.49%

LBA-GA 1 55.88% 9.18% 2.31% 0.38% 1 62.48% 15.06% 3.68% 0.89%

Figure 5 illustrates the load distribution of servers in EUA Dataset 1 with Laa = 0.7.
Under the No-Aux setting, the system shows poor load balance, with several servers
overloaded while others remain underutilized. Introducing auxiliary servers alleviates the
imbalance to varying degrees. Random-B and HE–GA provide only limited improvement,
while Trad–GA significantly reduces the number of overloaded servers. LBA–GA delivers
the best results, achieving both lower peak loads and more uniform distribution across
servers. This visualization confirms the superior capability of LBA–GA in balancing loads
under complex system conditions.

The iteration processes of the LBA–GA and Trad–GA methods are depicted in Figure 6.
It compares the convergence curves of Trad–GA and LBA–GA. Trad–GA converges slowly
and is prone to local optima in the early iterations. In contrast, LBA–GA, enhanced by
improved crossover, mutation, and selection strategies, achieves faster convergence and
higher solution quality within fewer iterations. It also maintains stable performance
without premature convergence, highlighting its effectiveness in efficiently solving the
A–ESD problem.

(a) (b) (c)

(d) (e)

Figure 5. Visualization of edge-server load balancing by different methods. (a) No-Aux; (b) Random-
B; (c) HE–GA; (d) Trad–GA; (e) LBA–GA.



Mathematics 2025, 13, 3087 16 of 21

Figure 6. Iteration process of the genetic algorithm.

5.5. Performance Impacts of Parameters

In addition, to assess the method’s effectiveness and performance trends across varying
conditions, several experiments were also conducted for various Laa values in the same
edge environment, and the results are depicted in Figures 7 and 8.

��� ��� ��� ��� ��� ��� 	��

��

���

���

���

���

R a S t d

L a a

�	�����
�
��
����
������
����
���
�������

(a)

��� ��� ��� ��� 	�� 	�� 
��

�����

�����

�����

�����

�����

�����

R a p e rS t d

L a a

�	�����
�
��
����
������
����
���
�������

(b)

��� ��� ��� ��� 	�� 	�� 
��

��

��

��

��

	�

���

���

���

���

R a �

L a a

�	�����
�
��
����
������
����
���
�������

(c)

	�� 	�� 
�� 
�� ��� ��� ���

�����

�����

�����

�����

�����

R a p e rD

L a a

�	�����
�
��
����
������
����
���
�������

(d)

Figure 7. Performance of each method on Dataset 1. (a) Load-balancing optimization; (b) load-
balancing optimization per node; (c) delay optimization; (d) delay optimization per node.

Figures 7a and 8a display the overall optimization level of each method in terms of
load-balancing optimization. For Dataset 1, as Laa increases, the need for auxiliary edge



Mathematics 2025, 13, 3087 17 of 21

servers also increases and the algorithm’s operational flexibility decreases, leading to a
gradual decline in the overall load-balancing optimization effect. For Dataset 2, since the
overall system resources are more sufficient, a small number of auxiliary edge servers
can be used to search for the optimal solution, and it is not until Laa reaches a certain
threshold that the disadvantage of reduced operational space becomes apparent. For the
Random and HE–GA methods, the absence of global load-balancing considerations during
their operation may prevent the algorithms from finding the optimal solution, resulting in
inferior outcomes and irregular variations in the standard deviation of the algorithms as
Laa changes. The LBA–GA method generally shows greater improvement in load-balancing
optimization than Trad–GA across different Laa values, while Trad–GA has more significant
advantages over the other methods.

The per-node optimization level of each method in terms of load-balancing optimiza-
tion is shown in Figures 7b and 8b. Although the effect of the overall load-balancing
optimization decreases as the value of Laa increases, the per-node optimization level in
terms of standard deviation for each method tends to remain stable, as this also concur-
rently reduces the number of deployed auxiliary edge servers. The LBA–GA method
exhibits a more pronounced advantage over the other methods; therefore, it is concluded
that the LBA–GA method is superior for both overall load-balancing optimization and the
cost-effectiveness of load-balancing optimization.

��� ��� ��� ��� ��� ��� 	��

��

���

���

���

���

R a S t d

L a a

�	�����
�
��
����
������
����
���
�������

(a)


�� 
	� ��� �	� ��� �	� 
��
������

���	��

�����

��	��

�����

��	��

�����

��	��

�����

��	��

�����

��	��

	����

R a p e rS t d

L a a

�	�����
�
��
����
������
����
���
�������

(b)

��� ��� ��� ��� 	�� 	�� 
��

��

��

��

��

	�

���

���

���

���

R a �

L a a

�	�����
�
��
����
������
����
���
�������

(c)

	�� 	�� 
�� 
�� ��� ��� ���

�����

�����

�����

�����

�����

�����

��	��

��
��

�����

�����

�����

�����

�����

R a p e rD

L a a

�	�����
�
��
����
������
����
���
�������

(d)

Figure 8. Performance of each method on Dataset 2. (a) Load-balancing optimization; (b) load-
balancing optimization per node; (c) delay optimization; (d) delay optimization per node.

The overall optimization level of each method in terms of delay is demonstrated in
Figures 7c and 8c. For Dataset 1, as Laa increases, the need for auxiliary edge servers in-
creases and the operational space for the algorithm is reduced, resulting in a gradual



Mathematics 2025, 13, 3087 18 of 21

reduction in the overall optimization of the delay. In contrast, in Dataset 2, the overall delay
is less sensitive to changes in Laa. The LBA–GA method generally outperforms the other
methods in terms of average improvement across different Laa values and holds a more
significant advantage.

The per-node optimization level of each method in terms of delay, as presented in
Figures 7d and 8d, indicates that for Dataset 1, although the overall standard deviation
effect diminishes as Laa increases, the per-node optimization level in terms of standard
deviation for each method tends to remain stable, as this approach also concurrently reduces
the number of auxiliary edge servers deployed. For Dataset 2, although the overall delay
changes little, the per-node improvement becomes greater as the number of auxiliary edge
servers decreases at higher Laa values. When the methods are compared, the performance
difference is not significant, and LBA–GA is concluded to be the best-performing method
across all scenarios.

Overall, the LBA–GA method demonstrates significant advantages in load-balancing
optimization, both in terms of overall improvement and cost-effectiveness, compared to
other methods. Additionally, it sustains superior performance in terms of latency while
ensuring load-balancing optimization. Therefore, it can be concluded that the LBA–GA
method is effective and superior in addressing the A–ESD problem proposed in this paper.

6. Related Work
During the deployment of edge servers, a multitude of factors must be taken into

account. Among these, geographical location is of paramount importance due to the
high sensitivity of edge servers to distance. The performance of the edge system can
exhibit substantial variation across different environments, and the objectives of research
on edge-server deployment can differ significantly as well. Therefore, identifying effective
deployment strategies for edge servers and the selection of appropriate specifications to
achieve specific goals are crucial research goals [22,23].

To optimize edge-server deployment, a variety of multi-objective and heuristic strate-
gies have been proposed in recent studies. Ye et al. [13] proposed a scheme for edge-server
deployment that combines multi-objective optimization methods and genetic algorithms.
By iteratively determining the number of servers through probabilistic modeling and then
optimizing their locations, they achieved load balancing while also minimizing delay and
energy consumption. Lovén et al. [16] employed a method for edge-server deployment
that considers a large number of constraints and parameters to expand edge servers in a
system that already contains deployed edge servers, achieving load balancing and demon-
strating stability [24]. Cao et al. [25] introduced a clustering method where the clustering
radius varies with density, along with an improved multi-objective optimization technique,
and presented a six-objective optimization framework for large-scale vehicular networks.
Given the complexity of the edge-server deployment problem, it is generally modeled
as a multi-objective optimization problem [21], which can be effectively addressed using
evolutionary or heuristic algorithms. Chang et al. [26] analyzed vehicle trajectories for
urban vehicular services and proposed a heuristic multi-objective optimization method
for roadside edge-server deployment. Zhang et al. [27] developed an integrated approach
using clustering algorithms and nonlinear programming to jointly optimize the deploy-
ment of both edge servers and services. Ling et al. [28] employed a graph convolutional
network-based traffic prediction model to inform edge-server placement, thereby reducing
overall deployment cost and the frequency of server overload. To enhance robustness,
Cui et al. [29] formulated a k-edge server-placement problem considering possible server
failures and solved it using an integer programming-based optimization approach. Chen
et al. [30] proposed a preference-aware placement method that accounts for user query



Mathematics 2025, 13, 3087 19 of 21

behavior across different regions, demonstrating improved performance on large-scale
datasets. Jasim et al. [9] applied edge-server deployment to the healthcare domain, devel-
oping an optimal placement algorithm that enhances service efficiency, cost-effectiveness,
and response latency. Liu et al. [31] addressed the security challenges in Web 3.0 vehicular
networks by proposing a non-cooperative game-theoretic placement scheme integrated
with anomaly-detection mechanisms to enhance deployment security.

Currently, significant progress has been made in the research on edge-server de-
ployment, yet certain limitations persist. Existing approaches rarely consider the in-
cremental deployment of new servers into an already existing system under overload
conditions. In contrast, our work explicitly addresses this gap by formulating the Auxil-
iary Edge Server Deployment (A–ESD) problem, which emphasizes load balancing and
incremental scalability.

7. Conclusions and Future Work
This paper studies a server-deployment scheme for the auxiliary edge-server deploy-

ment problem (A–ESD Problem) and includes load-balancing optimization in the optimal
objective. By deploying lightweight auxiliary edge servers, it addresses the severe resource-
shortage problem in edge systems. First, the paper formalizes the A–ESD Problem, models
it as a constrained optimization problem, and proves its NP-hardness. To effectively solve
the A–ESD Problem, this paper presents an improved method based on genetic algorithms,
called LBA–GA, which searches for the optimal deployment positions of auxiliary edge
servers to achieve the best possible load balance. Extensive experiments were conducted
on real-world datasets to evaluate the performance of LBA–GA. The experimental results
show that the LBA–GA method demonstrates significant advantages over the compared
methods across multiple metrics.

In future work, we plan to introduce the time-varying characteristics of user locations
and request demands. We will conduct research on server expansion in a time-varying edge
environment to explore strategies for dynamic edge-server deployment. We also intend
to investigate the runtime complexity and convergence of the proposed algorithm and to
design more efficient variants to improve scalability and practical applicability.

Author Contributions: Conceptualization, S.N. and B.Z.; methodology, S.N. and K.L.; software, X.Z.
and S.W.; validation, X.Z., S.W. and K.L.; formal analysis, G.Z.; investigation, S.N.; resources, B.Z.;
data curation, G.Z.; writing—original draft preparation, X.Z.; writing—review and editing, X.Z. and
S.W.; visualization, K.L.; supervision, G.Z. and B.Z.; project administration, S.N.; funding acquisition,
G.Z. and B.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by Natural Science Foundation of Xinjiang Uygur
Autonomous Region under Grant No. 2022D01A236, National Natural Science Foundation of China
under Grants 62272290, Shanghai Central Guide Local Science and Technology Development Fund
Projects under Grant No. YDZX20253100004004005.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Acknowledgments: The authors would like to thank Qiang He for the contributors of the EUA dataset,
which were essential for model validation. We also appreciate all of the anonymous reviewers for
their insightful suggestions and useful comments that will significantly improve the quality of
our manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.



Mathematics 2025, 13, 3087 20 of 21

References
1. Reinsel, D.; Gantz, J.; Rydning, J. Data Age 2025: The Evolution of Data to Life-Critical. Report, 2017. Available online:

https://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf (accessed on 12
April 2022).

2. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646.
[CrossRef]

3. Kong, L.; Tan, J.; Huang, J.; Chen, G.; Wang, S.; Jin, X.; Zeng, P.; Khan, M.; Das, S.K. Edge-computing-driven internet of things: A
survey. ACM Comput. Surv. 2022, 55, 1–41. [CrossRef]

4. Chinnasamy, P.; Rojaramani, D.; Praveena, V.; Annlin Jeba, S.; Bensujin, B. Data Security and Privacy Requirements in Edge
Computing: A Systemic Review. Cases Edge Comput. Anal. 2021, 171–187.

5. Wang, Z.; Zhou, Y.; Jin, X.; Chen, Y.; Lu, C. An edge server deployment approach for delay reduction and reliability enhancement
in the industrial internet. Wirel. Netw. 2024, 30, 5743–5757. [CrossRef]

6. Ghasemzadeh, A.; Aghdasi, H.S.; Saeedvand, S. Edge server placement and allocation optimization: A tradeoff for enhanced
performance. Clust. Comput. 2024, 27, 5783–5797. [CrossRef]

7. Li, Q.; Wang, S.; Zhou, A.; Ma, X.; Yang, F.; Liu, A.X. QoS driven task offloading with statistical guarantee in mobile edge
computing. IEEE Trans. Mob. Comput. 2020, 21, 278–290. [CrossRef]

8. Mondal, S.; Ruffini, M. Optical front/mid-haul with open access-edge server deployment framework for sliced O-RAN. IEEE
Trans. Netw. Serv. Manag. 2022, 19, 3202–3219. [CrossRef]

9. Jasim, A.M.; Al-Raweshidy, H. Optimal intelligent edge-servers placement in the healthcare field. IET Netw. 2024, 13, 13–27.
[CrossRef]

10. Yin, L.; Sun, J.; Zhou, J.; Gu, Z.; Li, K. ECFA: An Efficient Convergent Firefly Algorithm for Solving Task Scheduling Problems in
Cloud-Edge Computing. IEEE Trans. Serv. Comput. 2023, 16, 3280–3293. [CrossRef]

11. Asghari, A.; Sayadi, M.; Azgomi, H. Energy-aware edge server placement using the improved butterfly optimization algorithm.
J. Supercomput. 2023, 79, 14954–14980. [CrossRef]

12. Havas, S.; Azizi, S.; Abdollahpouri, A. A Multistart Power of d Choices Strategy for Edge Server Placement Problem. In
Proceedings of the 2023 7th International Conference on Internet of Things and Applications (IoT), Xining, China, 25–27 August
2023; pp. 1–6.

13. Ye, H.; Cao, B.; Liu, J.; Li, P.; Tang, B.; Peng, Z. An edge server deployment method based on optimal benefit and genetic
algorithm. J. Cloud Comput. 2023, 12, 148. [CrossRef]

14. Cui, G.; He, Q.; Chen, F.; Jin, H.; Yang, Y. Trading off between user coverage and network robustness for edge server placement.
IEEE Trans. Cloud Comput. 2020, 10, 2178–2189. [CrossRef]

15. Song, H.; Gu, B.; Son, K.; Choi, W. Joint optimization of edge computing server deployment and user offloading associations in
wireless edge network via a genetic algorithm. IEEE Trans. Netw. Sci. Eng. 2022, 9, 2535–2548. [CrossRef]

16. Lovén, L.; Lähderanta, T.; Ruha, L.; Leppänen, T.; Peltonen, E.; Riekki, J.; Sillanpää, M.J. Scaling up an Edge Server Deployment.
In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), Austin, TX, USA, 23–27 March 2020; pp. 1–7.

17. Raeisi-Varzaneh, M.; Dakkak, O.; Habbal, A.; Kim, B.S. Resource scheduling in edge computing: Architecture, taxonomy, open
issues and future research directions. IEEE Access 2023, 11, 25329–25350. [CrossRef]

18. Elgendy, I.A.; Meshoul, S.; Hammad, M. Joint Task Offloading, Resource Allocation, and Load-Balancing Optimization in
Multi-UAV-Aided MEC Systems. Appl. Sci. 2023, 13, 2625. [CrossRef]

19. Shruthi, G.; Mundada, M.R.; Supreeth, S.; Gardiner, B. Deep learning-based resource prediction and mutated leader algorithm
enabled load balancing in fog computing. Int. J. Comput. Netw. Inf. Secur. 2023, 15, 84–95. [CrossRef]

20. Kasi, S.K.; Kasi, M.K.; Ali, K.; Raza, M.; Afzal, H.; Lasebae, A.; Naeem, B.; Ul Islam, S.; Rodrigues, J.J. Heuristic edge server
placement in industrial internet of things and cellular networks. IEEE Internet Things J. 2020, 8, 10308–10317. [CrossRef]

21. Luo, F.; Zheng, S.; Ding, W.; Fuentes, J.; Li, Y. An Edge Server Placement Method Based on Reinforcement Learning. Entropy 2022,
24, 317. [CrossRef]

22. Li, B.; Hou, P.; Wu, H.; Hou, F. Optimal edge server deployment and allocation strategy in 5G ultra-dense networking
environments. Pervasive Mob. Comput. 2021, 72, 101312. [CrossRef]

23. Asghari, A.; Sohrabi, M.K. Multiobjective edge server placement in mobile-edge computing using a combination of multiagent
deep q-network and coral reefs optimization. IEEE Internet Things J. 2022, 9, 17503–17512. [CrossRef]

24. Lähderanta, T.; Leppänen, T.; Ruha, L.; Lovén, L.; Harjula, E.; Ylianttila, M.; Riekki, J.; Sillanpää, M.J. Edge server placement with
capacitated location allocation. arXiv 2019, arXiv:1907.07349. [CrossRef]

25. Cao, B.; Fan, S.; Zhao, J.; Tian, S.; Zheng, Z.; Yan, Y.; Yang, P. Large-scale many-objective deployment optimization of edge servers.
IEEE Trans. Intell. Transp. Syst. 2021, 22, 3841–3849. [CrossRef]

https://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
http://doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1145/3555308
http://dx.doi.org/10.1007/s11276-023-03339-z
http://dx.doi.org/10.1007/s10586-024-04277-x
http://dx.doi.org/10.1109/TMC.2020.3004225
http://dx.doi.org/10.1109/TNSM.2022.3173915
http://dx.doi.org/10.1049/ntw2.12097
http://dx.doi.org/10.1109/TSC.2023.3293048
http://dx.doi.org/10.1007/s11227-023-05271-7
http://dx.doi.org/10.1186/s13677-023-00524-5
http://dx.doi.org/10.1109/TCC.2020.3008440
http://dx.doi.org/10.1109/TNSE.2022.3165372
http://dx.doi.org/10.1109/ACCESS.2023.3256522
http://dx.doi.org/10.3390/app13042625
http://dx.doi.org/10.5815/ijcnis.2023.04.08
http://dx.doi.org/10.1109/JIOT.2020.3041805
http://dx.doi.org/10.3390/e24030317
http://dx.doi.org/10.1016/j.pmcj.2020.101312
http://dx.doi.org/10.1109/JIOT.2022.3161950
http://dx.doi.org/10.1016/j.jpdc.2021.03.007
http://dx.doi.org/10.1109/TITS.2021.3059455


Mathematics 2025, 13, 3087 21 of 21

26. Chang, L.; Deng, X.; Pan, J.; Zhang, Y. Edge server placement for vehicular ad hoc networks in metropolitans. IEEE Internet
Things J. 2021, 9, 1575–1590. [CrossRef]

27. Zhang, X.; Li, Z.; Lai, C.; Zhang, J. Joint edge server placement and service placement in mobile-edge computing. IEEE Internet
Things J. 2021, 9, 11261–11274. [CrossRef]

28. Ling, C.; Feng, Z.; Xu, L.; Huang, Q.; Zhou, Y.; Zhang, W.; Yadav, R. An edge server placement algorithm based on graph
convolution network. IEEE Trans. Veh. Technol. 2022, 72, 5224–5239. [CrossRef]

29. Cui, G.; He, Q.; Xia, X.; Chen, F.; Jin, H.; Yang, Y. Robustness-oriented k Edge Server Placement. In Proceedings of the 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melboune, Australia, 11–14 May
2020; pp. 81–90.

30. Chen, Y.; Lin, Y.; Zheng, Z.; Yu, P.; Shen, J.; Guo, M. Preference-Aware Edge Server Placement in the Internet of Things. IEEE
Internet Things J. 2022, 9, 1289–1299. [CrossRef]

31. Liu, Z.; Xu, X.; Han, F.; Zhao, Q.; Qi, L.; Dou, W.; Zhou, X. Secure edge server placement with non-cooperative game for internet
of vehicles in web 3.0. IEEE Trans. Netw. Sci. Eng. 2023, 11, 4020–4031. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2021.3093155
http://dx.doi.org/10.1109/JIOT.2021.3125957
http://dx.doi.org/10.1109/TVT.2022.3226681
http://dx.doi.org/10.1109/JIOT.2021.3079328
http://dx.doi.org/10.1109/TNSE.2023.3321139

	Introduction
	Motivating Example
	System Model
	Edge System
	Load Balancing- and Delay-Aware Model
	A–ESD Problem

	Approach
	Optimization Model
	A–ESD Problem Hardness
	LBA–GA Method
	Overview of LBA–GA Algorithm
	Generation Update of LBA–GA


	Experiments
	Experimental Setup and Dataset
	Comparative Methods and Evaluation Metrics
	Experiment Results and Analyses
	Performance Impact of Parameters
	Performance Impacts of Parameters

	Related Work
	Conclusions and Future Work
	References

