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A B S T R A C T

Trajectory inference (TI) aims to infer cell differentiation trajectories in biological processes. Numerous
computational methods have been developed to infer cell lineages from single-cell gene expression data.
However, cluster-based methods involve a discretization that fails to capture the continuous nature of
differentiation processes, while graph-based methods directly estimate the differentiation process from gene
expression profiles without detecting subpopulations, making them susceptible to noise. To address these
limitations, we propose scTICG, a single-cell trajectory inference method through critical cell identification
and a greedy strategy. scTICG integrates the strengths of cluster-based and graph-based methods. Initially,
a cluster-based backbone structure is constructed to serve as a coarse-grained trajectory. Then, considering
the dynamics of cell state transitions and the influence of certain critical cells, we identify these critical cells
using the graph centrality algorithm. Subsequently, these critical cells are leveraged to refine the trajectory
using a greedy strategy. We evaluate scTICG on five public datasets and compare its performance with eight
state-of-the-art trajectory inference methods. The experimental results demonstrate that scTICG can infer more
accurate and robust trajectories compared to competitive methods. The R code for scTICG is freely available
at https://github.com/DHUDBlab/scTICG.
1. Introduction

Cells undergo state transitions during many biological processes,
such as development, reprogramming, regeneration and cancer. Recent
advances in single-cell sequencing technologies provide opportunities
to study these cellular dynamic processes at the single-cell level [1–
6]. Based on the observation that developmentally related cells tend
to share similarities in gene expression, cell trajectory inference re-
constructs developmental processes and orders cells along trajectories
in an unbiased manner [7]. The inferred trajectories can provide re-
searchers insights into the process of cellular decision-making and fate
specification [8].

Many computational methods have been proposed for trajectory
inference. On the whole, these methods can be broadly divided into two
categories, including cluster-based and graph-based methods [9,10].
Cluster-based TI methods usually first cluster cells into distinct states
in a low dimensional space, and subsequently connect these clusters to
construct trajectory structures based on minimum spanning tree (MST)
or reverse graph embedding (RGE) [11]. TSCAN [12] is a pioneering
method that constructs developmental trajectories based on cell clus-
ters. Slingshot [13] employs a simultaneous principal curve to fit the
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cluster-based MST and obtain a smoother trajectory, then orthogonally
projects cells onto the trajectory to calculate pseudotime. TIPD [14]
adopts signal entropy to quantify the heterogeneity of each cluster
and identifies the cluster with the highest heterogeneity as the start
cluster, simultaneously introducing Jensen–Shannon divergence (JSD)
to calculate the distance between cell clusters. Monocle2 [11] initially
partitions cells into clusters based on the k-means algorithm and builds
a spanning tree between the centroids in the reduced space. Then,
it uses RGE to iteratively adjust the spanning tree and the positions
of centroids to maintain the mapping between the high-dimensional
gene expression space and the reduced space. As an extension, Mon-
ocle3 [15] first utilizes UMAP to reduce the dimensionality of the
data and subsequently follows the main idea of Monocle2 to infer
pseudotime trajectories. Different from cluster-based methods, graph-
based TI methods typically construct a cell-to-cell similarity graph
and then infer trajectory topology based on the graph [10,16]. For
example, Wanderlust [17] is a graph-based trajectory inference method
that receives multiparameter single-cell events as input and maps them
onto a one-dimensional developmental trajectory. Diffusion Pseudo-
time (DPT) [18] defines pseudotime as the sum of all lengths over
https://doi.org/10.1016/j.neucom.2025.129482
Received 18 October 2024; Received in revised form 28 December 2024; Accepted 
vailable online 23 January 2025 
925-2312/© 2025 Published by Elsevier B.V. 
16 January 2025

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
https://orcid.org/0000-0002-4103-1968
https://orcid.org/0000-0003-0313-8833
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67310
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67310
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67310
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67310
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67310
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67310
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67310
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67310
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
http://hrpi.ddnetbio.com/
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://zenodo.org/records/1443566/files/real/gold/human-embryos_petropoulos.rds?download=1
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.xlsx
https://github.com/DHUDBlab/scTICG
mailto:gbzou@shu.edu.cn
https://doi.org/10.1016/j.neucom.2025.129482
https://doi.org/10.1016/j.neucom.2025.129482


Y. Gan et al.

d

s
n

m
c
c

i

i

i
u
i
D

i
p
i
c

c
s
g
t
t
t
W
c
c

n
a
g

a

t
f
S

d
t
r

b

c

c

Neurocomputing 624 (2025) 129482 
diffusion-like random walks based on the transition probability matrix,
and branching points are identified based on the triangle inequality
principle. PAGA [19] extends DPT and can estimate pseudotime on
isconnected graphs. It adopts the Louvain algorithm to partition cells,

and subsequently orders cells within each connected component using
a random-walk-based distance measure. BLTSA [16] utilizes tangent
pace to identify branch and tipping cells as well as find each cell’s
eighborhood local tangent coordinates and calculate the global co-

ordinates of cells as pseudotime. Although these trajectory inference
algorithms have made significant progress in inferring cellular trajec-
tories, they still encounter some challenges. Specifically, cluster-based

ethods can infer more robust trajectories, but they view the process of
ell development as a discrete cellular state process and ignore critical
ells in the process. In contrast, graph-based methods account for the

continuity of cell differentiation. However, they are susceptible to noise
nterference.

As cellular states undergo dynamic changes over time, certain crit-
cal cells might significantly influence the cellular process. Recently,

scTite [20] combines signal entropy with a soft-clustering method to
dentify transition cells and construct transitional paths. MuTrans [21]
tilizes multi-scale reduction to construct a dynamic manifold and
dentify stable and transitioning cells, as well as transition paths.
BCTI [22] connects clusters based on the transition cells. After de-

tecting cell states using a density-based clustering method, it calculates
the probability of a cell belonging to different cell states through a
sampling method and identifies transition cells. Overall, these methods
ncreasingly focus on the effect of critical cells in the cell development
rocess, but they still exhibit some limitations. First, they usually
dentify transition cells in a static way, which limits the ability to
apture the dynamics of cell development. Additionally, the number of

transition cells usually needs to be specified, which can influence the
accuracy of trajectory inference.

To address these limitations, we present scTICG, a new single-
ell trajectory inference method based on critical cells and a greedy
trategy. scTICG integrates the strengths of both cluster-based and
raph-based methods. Initially, we construct a minimum spanning tree
o connect identified cell clusters as the backbone structure of the
rajectory. Recognizing that cell development is a dynamic process, we
hen reconstruct each cluster–cluster trajectory based on critical cells.

e employ the graph centrality algorithm to dynamically identify these
ritical cells. According to their states during differentiation, cells are
ategorized as initial, terminal and intermediate state. Choosing appro-

priate cells as starting and end points, we reconstruct the trajectory
based on the critical cells using a greedy strategy. We evaluate the per-
formance of scTICG on five single-cell datasets. The results validate the
ability of scTICG to infer various trajectory structures, including linear,
single-branch, and multi-branch trajectories. Comparisons with existing
methods show that scTICG outperforms state-of-the-art methods with
different assessment criteria.

2. Material and methods

2.1. The overview of scTICG

To infer cell trajectories from single-cell data, we propose scTICG, a
ovel single-cell trajectory inference method based on critical cells and
 greedy strategy. scTICG integrates the strengths of cluster-based and
raph-based methods. As illustrated in Fig. 1, the trajectory inference

process of scTICG consists of three main steps. First, we construct
 minimum spanning tree in the embedding space to connect all

identified cell clusters, forming the initial coarse-grained trajectory.
Secondly, considering the dynamics of the cell state transition, we
identify critical cells and refine each cluster–cluster trajectory. This
step involves two sub-steps. In the first sub-step, we employ the graph
centrality algorithm to identify critical cells. We model a complete

graph of cells from the two directly connected clusters and prune noise

2 
edges based on the cosine similarity between cell connections and the
cluster–cluster trajectory. We then combine the refined graph with
graph centrality algorithms to identify critical cells: initial cells with
low in-degree centrality, terminal cells with low out-degree centrality,
and intermediate cells with high closeness centrality. The candidate
cells for trajectory reconstruction consist of critical cells and cluster
centroids. In the second sub-step, choosing appropriate cells as starting
and end points, we reconstruct the trajectory using a greedy strategy.
In the third step, we employ the principal curve algorithm to smooth
the reconstructed trajectory and project cells onto the trajectory to
calculate pseudotime.

Step 1. Constructing the initial cluster-based trajectory
Given the preprocessed single-cell gene expression data 𝐷𝑁∗𝑀 ,

where 𝑁 and 𝑀 respectively correspond to the numbers of cells and
genes, we first employ dimensionality reduction techniques to project
the high-dimensional data into a 𝑑-dimensional space 𝐷𝑁∗𝑑 . This step
reduces the computational cost of subsequent analyses and mitigates
the impact of noise on the accuracy of inferred trajectories. To select
he most appropriate dimensionality reduction method, we compare
our different dimensionality reduction methods, including PCA [23], t-
NE [24,25], UMAP [26] and PAHTE [27]. We respectively apply these

four dimensionality reduction methods to four real scRNA-seq datasets
(HSMM, Fibroblast, HE and iPSC), and compare the clustering results.
The comparative analysis indicates that t-SNE is more suitable for small
atasets, while UMAP is more effective for large datasets (Supplemen-
ary Table 1). Consequently, we choose t-SNE as the dimensionality
eduction method for datasets with 𝑁 < 2000, otherwise, we use UMAP.

After dimensionality reduction, we cluster cells into 𝑘 subpopula-
tions, where 𝑘 can be specified by the user or automatically determined
y the silhouette coefficient [12,28]. To choose the proper clustering

method, we conduct a comparative analysis involving hierarchical clus-
tering, two classical methods (k-means and Gaussian Mixture Models
(GMM)), and a recently developed algorithm, SLNMF [29], across
four real scRNA-seq datasets. The results indicate that hierarchical
lustering surpasses the other three methods in terms of accuracy (Sup-

plementary Table 2). Furthermore, scTICG exhibits robust performance
across different numbers of clusters (Supplementary Figure 2). There-
fore, we utilize hierarchical clustering in the subsequent analysis. We
calculate the distance between cell clusters, and subsequently construct
an MST to connect all these cell clusters. Accordingly, we obtain cluster-
level trajectory. For a particular trajectory segment, it is a set of ordered
clusters.

Step 2. Reconstructing each cluster–cluster trajectory
Cluster-based trajectory analysis regards cellular processes as dis-

rete states. However, driven by various molecular and environmental
factors, cellular states usually undergo dynamic changes over time
which are significantly influenced by some critical cells. Specifically,
the centroid of the initial cluster often does not represent the true
starting point of cell development, nor does the centroid of the final
cluster represent the endpoint. Additionally, certain intermediate state
cells serve as connectors, facilitating transitions between cell states.
Therefore, we classify critical cells into three categories, including
initial, terminal and intermediate cells. Intermediate cells connect ini-
tial and terminal cells along the cell state transition trajectory. We
refine the trajectory based on these critical cells. Considering the
complexity of trajectory reconstruction, we separately reconstruct each
cluster–cluster trajectory. First, we identify critical cells using the graph
centrality algorithm. These critical cells and cluster centroids are served
as the candidate cells for trajectory reconstruction. Then, choosing ap-
propriate candidate cells as starting and ending points, we reconstruct
the trajectory using a greedy strategy.

Step 2.1. Identifying critical cells
Let 𝐶𝑖 and 𝐶𝑗 represent two directly connected clusters along a

trajectory segment. We initially construct a complete directed cell-to-
cell graph 𝐺(𝑉 , 𝐸) for all cell nodes 𝑉 in cluster 𝐶𝑖 and 𝐶𝑗 , where
𝐸 represents the edge set and the edge weights are calculated by the
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Fig. 1. The framework of scTICG. (A) Given the processed gene expression data, map the data into 2-dimensional space, use hierarchical clustering to divide cells into different
states, and then construct an MST to connect all clusters. (B) Reconstruct each cluster–cluster trajectory. (B.1) Construct a complete graph for cells from the two directly connected
clusters, prune noise edges based on the cosine similarity between cell connections and the cluster–cluster trajectory, and employ the graph centrality algorithm to identify critical
cells (initial, terminal, and intermediate cells). (B.2) Construct a distance matrix among the candidate cells (critical cells and cluster centroids) for trajectory reconstruction, then
refine the cluster–cluster trajectory based on a greedy strategy. (C) Utilize the principal curve algorithm to smooth the refined trajectory, and then project cells orthogonally onto
the smoothed trajectory to calculate pseudotime.
Euclidean distance. Then, we utilize the cell-to-cell graph to identify
critical cells. Considering noise edges in the graph complicates the
identification of critical cells and increase computational complexity,
we prune these edges based on the cosine similarity between cell
connections and the cluster-level trajectory, which is calculated as:

cos 𝜃 =
(𝑐𝑖 − 𝑐𝑗 ) ⋅ (𝑢 − 𝑣)
‖𝑐𝑖 − 𝑐𝑗‖ ⋅ ‖𝑢 − 𝑣‖

(1)

where 𝑐𝑖 and 𝑐𝑗 respectively denote the cluster centroid of cluster 𝐶𝑖
and 𝐶𝑗 , 𝑢 and 𝑣 are cell vectors of two connected cells. If cos 𝜃 < 0,
indicating that the connection from the cell 𝑢 to 𝑣 contradicts the
overall direction, we remove it from 𝐺.

In graph theory, degree centrality measures the total number of
direct connections a node has with other nodes. According to the
previous study [30], starting nodes typically have lower in-degree
and higher out-degree, whereas terminal nodes exhibit the opposite
pattern. Consequently, we utilize in-degree and out-degree metrics to
identify starting and terminal cells. Previous research [31] suggests that
closeness centrality and betweenness centrality are effective for identi-
fying critical intermediate cells. Based on our comparative analysis of
closeness centrality, betweenness centrality and a combination of the
two (Supplementary Table 3), closeness centrality is more effective in
identifying critical intermediate cells. Therefore, we utilize closeness
3 
centrality in the subsequent analyses. Based on the pruned graph
𝐺′(𝑉 , 𝐸′), we adopt the graph centrality algorithm [31] to calculate the
in-degree, out-degree and closeness centrality of each cell. For a node
𝑣, the in-degree, out-degree and closeness centrality are calculated as:

InDegree(𝑣) =
∑

𝑢∈𝑉 ∧𝑢≠𝑣 𝐼 𝑛𝑢,𝑣
𝑁 − 1 (2)

OutDegree(𝑣) =
∑

𝑢∈𝑉 ∧𝑢≠𝑣 𝑂 𝑢𝑡𝑣,𝑢
𝑁 − 1 (3)

CCentrality(𝑣) = 𝑁 − 1
∑

𝑢∈𝑉 ∧𝑢≠𝑣 𝑑(𝑢, 𝑣)
(4)

where 𝑁 is the total number of nodes in the pruned graph 𝐺′. 𝐼 𝑛𝑢,𝑣
denotes a directed edge from node 𝑢 to node 𝑣, 𝑂 𝑢𝑡𝑣,𝑢 is just the
opposite. 𝑑(𝑢, 𝑣) represents the geodesic distance between nodes 𝑢 and
𝑣.

Combining the three types of centrality values, we can identify
critical cells Ccritical, including initial, terminal and intermediate cells.
Specifically, cells in the initial cell cluster with low in-degree centrality
are identified as initial cells, while cells in the terminal cell cluster
with low out-degree centrality are identified as terminal cells [30].
Closeness centrality evaluates the significance of nodes from a global
graph structure perspective [32,33]. A node 𝑣 with a lower average
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geodesic distance to all other nodes demonstrates higher closeness
centrality, indicative of a robust capability to disseminate information
across the graph. To automatically identify intermediate cells, we focus
n cells that exhibit higher closeness centrality. Utilizing the GMM in
he mclust package [34], cells are automatically categorized into 𝐿

levels, denoted as {𝑙 𝑒𝑣𝑒𝑙1, 𝑙 𝑒𝑣𝑒𝑙2,… , 𝑙 𝑒𝑣𝑒𝑙𝐿}. The efficiency of informa-
tion transmission increases from 𝑙 𝑒𝑣𝑒𝑙1 to 𝑙 𝑒𝑣𝑒𝑙𝐿. Consequently, cells at
𝑙 𝑒𝑣𝑒𝑙𝐿 are recognized as intermediate cells. For all cells in 𝑉 , initial,
terminal and intermediate cells are identified as below:

Cinitial = {𝑣 ∈ 𝑉 ∶ 𝑣 ∈ Clusterinitial ∧ InDegree(𝑣) < 𝛿} (5)

Cterminal = {𝑣 ∈ 𝑉 ∶ 𝑣 ∈ Clusterterminal ∧ OutDegree(𝑣) < 𝛿} (6)

Cintermediate = {𝑣 ∈ 𝑉 ∶ 𝑣 ∈ 𝑙 𝑒𝑣𝑒𝑙𝐿} (7)

where Clusterinitial denotes the initial cluster, Clusterterminal represents
the terminal cluster, and 𝛿 is a threshold. Here, according to the perfor-

ance analysis of different thresholds across four scRNA-seq datasets
Supplementary Figure 3), we set the default value of 𝛿 to 0.05. As the
omputational complexity increases with the number of cells increases,
or larger clusters, we randomly select M (defaulted value: 200) cells
rom the cluster to find critical cells rather than analyzing all cells in
he cluster.

Step 2.2. Refining the trajectory based on critical cells
Based on these identified critical cells Ccritical, we can refine the

trajectory from cluster 𝐶𝑖 to 𝐶𝑗 . Each trajectory reconstruction is ini-
ialized at a starting node and terminated at any ending node. Here,
he starting and ending nodes of trajectory reconstruction are defined
s:

Nodestart =

{

Cinitial if Cinitial ≠ ∅
𝑐 𝑒𝑛𝑡𝑒𝑟𝑖 otherwise

(8)

Nodeend =

{

Cterminal if Cterminal ≠ ∅
𝑐 𝑒𝑛𝑡𝑒𝑟𝑗 otherwise

(9)

where 𝑐 𝑒𝑛𝑡𝑒𝑟𝑖 and 𝑐 𝑒𝑛𝑡𝑒𝑟𝑗 respectively denote the centroid of cluster 𝐶𝑖
and 𝐶𝑗 .

Thus, we obtain the candidate set for trajectory reconstruction,
Nodestart
⋃Cintermediate

⋃Nodeend. Taking each node in Nodestart as the starting
point, we iteratively reconstruct the trajectory based on a greedy
strategy. We construct a distance matrix 𝐷 among these candidate
nodes and prune noise edges to get 𝐷′. The node 𝑛𝑜𝑑 𝑒𝑘𝑡 at step 𝑘 of
he 𝑡th trajectory reconstruction is selected from candidate nodes to
he reconstructed path sequence 𝑝𝑡 if 𝑛𝑜𝑑 𝑒𝑘𝑡 is closest to 𝑛𝑜𝑑 𝑒(𝑘−1)𝑡 and
𝑛𝑜𝑑 𝑒𝑘𝑡 ∉ 𝑝𝑡 according to 𝐷′. In the 𝑡th trajectory reconstruction, after

iterations, we get a sequence of nodes on the reconstructed path,
epresenting as 𝑝𝑡 = {𝑛𝑜𝑑 𝑒1𝑡,… , 𝑛𝑜𝑑 𝑒𝑘𝑡}. Eventually, we obtain multiple
econstructed paths and then choose the path that covers most cells as
he final reconstructed path from the pool of candidate reconstructed
aths.

Step 3. Calculating pseudotime
Based on the reconstructed cluster–cluster connections, we get the

refined trajectory. To obtain the final smoothed development trajec-
tory, we utilize the principal curve algorithm [35] to fit it. Subse-
quently, we orthogonally project cells onto the smoothed trajectory,
calculating the distance from the projection point of each cell to the
starting cell along the trajectory. These distances represent the pseu-
dotime values of the cells, denoted as 𝜋 = {𝜋𝑖}𝑁𝑖=1. We then rescale the
pseudotime values using a max–min scale to ensure they fall within the
range of 0 and 1. The calculation is formulated as:

𝜋′
𝑖 =

𝜋𝑖 − min𝜋
max𝜋 − min𝜋 (10)
4 
2.2. Datasets and data preprocessing

We evaluate the performance of scTICG on five widely-used datasets,
including four real single-cell RNA sequencing (scRNA-seq) datasets
including HSMM, Fibroblast, HE and iPSC) and one synthetic dataset
Hrpi). The HSMM dataset contains 372 cells from differentiating

human skeletal muscle myoblasts and is collected at four different time
oints (0, 24, 48 and 72 h) [36]. The Fibroblast dataset encompasses

355 cells sampled at five distinct time points (0, 2, 5, 20 and 22 days)
during the differentiation process from mouse embryonic fibroblasts
into induced neuronal cells [37]. The HE dataset consists of 1289
human embryo samples collected at five distinct time points (3, 4, 5, 6
and 7 days) [7]. The iPSC dataset is induced pluripotent stem cell [21],
containing 1896 cells and 96 genes after removing heterogeneous cells
for quality control and collected at 0, 1, 1.5, 2, 2.5, 3, 4 and 5 days.
The Hrpi dataset integrates scRNA-seq and snRNA-seq data, containing
43791 cells and 11549 genes [38].

The inherent sparsity and noise in single-cell data necessitate rig-
orous preprocessing. Here, Our data preprocessing encompasses gene
filtering, data normalization, feature selection and data imputation.
Initially, we eliminate genes not expressed in more than 10 cells to
reduce noise. Then, we apply log2 normalization to the remaining
genes to mitigate technical and biological variations across single-
cell samples. Subsequently, we employ feature selection techniques to
reduce data dimensionality. Specifically, we select the top 𝑣 (ranging
from 10% to 20%) of genes exhibiting the highest variance across all
cells as representative genes. To determine the optimal gene filtering
ratio 𝑣, we employ clustering methods to the three filtered datasets,
and assess the clustering performance. The value yielding the highest
average ARI is selected for further analysis. The iPSC dataset, already
preprocessed, does not require further gene filtering Finally, we utilize
imputation algorithms to alleviate the impact of dropout events on
subsequent analysis. On these real scRNA-seq datasets, we compare four
popular imputation methods, including MAGIC [39], DrImpute [40],
ALRA [41] and scISR [42]. As MAGIC consistently outperforms other

ethods in data imputation, it is chosen for subsequent analysis. For
he Hrpi dataset, we utilize Seurat from the original literature to ensure
onsistency with previous analyses [38].

2.3. Evaluation metrics

We employ four methods to comprehensively evaluate the per-
formance of trajectory inference methods. First, the pseudo-temporal
ordering score (POS) [12] and Spearman’s rank correlation coefficient
(SRCC) are adopted to quantitatively assess the accuracy and consis-
tency between inferred trajectories and true development trajectories.
Secondly, we assess the robustness by calculating SRCC under different
perturbations, including different cell sampling rates and different gene
filtering ratios. Thirdly, we compare the running time under various
data sizes to evaluate the efficiency of different TI methods. Finally, we
evaluate and compare the accuracy of different methods in identifying
biological marker genes involved in the biological process.

It is assumed that external information not used in pseudotime
nference is available to evaluate the pairwise order of cells. Let 𝜋
enotes an inferred path of 𝑁 cells, the POS is calculated as the sum
f 𝑔(𝜋 , 𝑖, 𝑗) over all pairs of cells:

POS =
𝑁𝜋−1
∑

𝑖=1

∑

𝑗∶𝑗 >𝑖
𝑔(𝜋 , 𝑖, 𝑗) (11)

Here, 𝑔(𝜋 , 𝑖, 𝑗) is a score that quantifies how well the order of the
𝑖th and 𝑗th cells in the ordered path matches their reference order.
Considering the 𝑖th cell is precedes the 𝑗th cells in the ordered path
𝜋, 𝑔(𝜋 , 𝑖, 𝑗) is calculated as:

𝑔(𝜋 , 𝑖, 𝑗) =
{

0 if 𝑇 (𝑖) = 𝑇 (𝑗)
(12)
(𝑇 (𝑗) − 𝑇 (𝑖))∕𝐷𝜋 otherwise
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Fig. 2. The identified clusters and inferred trajectories by scTICG on fours real scRNA-seq datasets. (A) HSMM, (B) Fibroblast, (C) HE and (D) iPSC. (First row: the cell
types from the original study; second row: the cell clusters identified by scTICG; third row: the pseudotime inferred by scTICG).
where 𝑇 (𝑖) and 𝑇 (𝑗) respectively indicate the collection time points of
the 𝑖th and 𝑗th cells. 𝐷𝜋 serves as a normalization parameter to ensure
that the POS remains within the range of −1 to 1.

The SRCC is calculated as:

SRCC =
∑

𝑖(𝑇 𝑟𝑢𝑒𝑖 − 𝑇 𝑟𝑢𝑒)(𝐼 𝑛𝑓 𝑒𝑟𝑖 − 𝐼 𝑛𝑓 𝑒𝑟)
√

∑

𝑖(𝑇 𝑟𝑢𝑒𝑖 − 𝑇 𝑟𝑢𝑒)2
√

∑

𝑖(𝐼 𝑛𝑓 𝑒𝑟𝑖 − 𝐼 𝑛𝑓 𝑒𝑟)2
(13)

where 𝑇 𝑟𝑢𝑒 and 𝐼 𝑛𝑓 𝑒𝑟 represent the rank of the real cell ordering and
the rank of the inferred pseudotime ordering, respectively. A higher
SRCC value indicates that the inferred pseudotime ordering is more
consistent with the true order.

3. Results

To evaluate the performance of scTICG for inferring cell trajectories,
we apply it to five single-cell datasets (HSMM, Fibroblast, HE, iPSC
and Hrpi), which contain pseudo-time information derived from prior
studies. Additionally, we conduct a comparative analysis of scTICG
against eight state-of-the-art trajectory inference methods:

• TSCAN [12] constructs MST based on cluster centroid and maps
cells to the MST to calculate pseudotime.

• Slingshot [13] constructs a cluster-based MST in the embedding
space, fits the MST using simultaneous principal curves, and
calculates pseudo-time by orthogonally projecting cells onto the
trajectory.

• DensityPath [43] calculates the density of cells and selects high-
density clusters as representative cell states (RCSs). Then, an MST
is constructed between RCSs to represent the state transition path
on a density landscape.

• TIPD [14] introduces JSD to measure the distances between dif-
ferent clusters and construct MST and then uses the simultaneous
principal curve to calculate pseudotime.

• Monocle3 [15] utilizes UMAP to reduce data dimensionality and
infers the pseudotime trajectories with RGE in the embedding
space.

• scTite [20] identifies transition cells with higher transition en-
tropy, and then constructs transitional paths to optimize the
cluster-based MST.
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• PseudoGA [44] introduces a genetic algorithm to order cells with
the assumption that gene expressions vary according to a smooth
curve along the trajectory.

• BLTSA [16] identifies tip and branching cells, clusters cells to
obtain the local linear coordinates, and then assigns cells to a
global trajectory by minimizing differences between local and
global coordinates.

3.1. Trajectory inference on five single-cell datasets

We first assess the performance of scTICG in inferring cell trajec-
tories on the four real scRNA-seq datasets, and detailed experimental
results are shown in Fig. 2. According to previous studies [11,12,20],
the HSMM dataset comprises two branches, including the primary
path and a secondary path influenced by contaminating interstitial
mesenchymal cells. scTICG identifies four distinct cell states and suc-
cessfully infers two trajectories that closely align with the reference
trajectory. For the Fibroblast dataset, scTICG infers two bifurcated
trajectories, consistent with the previous study [37]. The HE dataset
contains one linear trajectory from embryonic day 3 to embryonic day
7 [7]. scTICG divides cells into five clusters and successfully infers
one linear trajectory. According to the previous study [21], the iPSC
dataset features two distinct developmental trajectories, with branching
occurring as cells transition from a primitive streak state to either a
mesodermal state or an endodermal state. scTICG accurately identifies
four clusters and infers the branching trajectory consistent with prior
research.

Subsequently, we compare the trajectory accuracy inferred by sc-
TICG against other competing TI methods, adopting POS and SRCC as
the evaluation metrics. Each method is executed 10 times, and then the
average score is calculated. To quantitatively compare our method with
other competing methods, we calculate the 95% confidence intervals
(CI) for both POS and SRCC metrics for each method. Additionally,
we perform the Wilcoxon rank-sum test to evaluate the statistical
significance of differences in POS and SRCC values between scTICG and
the competing methods, with the alternative hypothesis that the POS
and SRCC of scTICG are higher. A 𝑝-value less than 0.05 is considered
significant, indicating that scTICG outperforms the competing methods.
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Fig. 3. The performance comparison of scTICG with eight state-of-the-art trajectory inference methods. The accuracy is measured by POS and SRCC. Error bars represent
the 95% confidence intervals around the means. Statistical significance is indicated by *P< 0.05 and **P< 0.01, based on the Wilcoxon rank-sum test comparing the POS and
SRCC of scTICG with each of the other methods.
Fig. 4. Trajectory inference on the Hrpi dataset. (A) The cell types from the original study. (B) the cell clusters identified by scTICG. (C) The pseudotime trajectory inferred by
scTICG. (D) Accuracy comparison between scTICG and other TI methods using SRCC. Error bars represent the 95% confidence intervals around the means. Statistical significance
is indicated by *P< 0.05 and **P< 0.01, based on the Wilcoxon rank-sum test comparing the SRCC of scTICG with each of the other methods.
Fig. 3 shows the performance of scTICG across the above four datasets.
Overall, the results demonstrate that scTICG exhibits higher accuracy in
pseudotime ordering compared to the competing methods. Specifically,
For the HSMM dataset, the POS and SRCC scores for the pseudo-
time inferred by scTICG are 0.701 (95%𝐶 𝐼 : 0.668-0.735) and 0.677
(95%𝐶 𝐼 : 0.642-0.712), respectively, approximately 2.6% higher than
those achieved by the sub-optimal method, DensityPath. On the Fibrob-
last dataset, scTICG achieves POS and SRCC scores of 0.972 (95%𝐶 𝐼 :
0.969-0.974) and 0.937 (95%𝐶 𝐼 : 0.934-0.940), respectively, slightly
surpassing the scores of the closest competitor method, DensityPath.
Regarding the HE dataset, scTICG achieves the highest POS (0.959,
95%𝐶 𝐼 : 0.955-0.963) and SRCC (0.918, 95%𝐶 𝐼 : 0.913-0.923) scores,
which are about 2.7% and 3.2% higher than those of the sub-optimal
method, TSCAN. On the iPSC dataset, scTICG also outperforms all
competing methods, achieving the highest POS (0.974, 95%𝐶 𝐼 : 0.970-
0.978) and SRCC (0.950, 95%𝐶 𝐼 : 0.943-0.957) scores. Overall, on the
HE and iPSC datasets, scTICG significantly outperforms the compared
methods. While on the HSMM and Fibroblast datasets, scTICG exhibits
higher performance than the other methods, except DensityPath and
6 
scTite.
Next, to further validate the performance of scTICG on large-scale

datasets with more complex trajectories, we apply it to the Hrpi dataset.
According to the previous study [38], the Hrpi dataset predominantly
features four distinct developmental trajectories. Specifically, the first
trajectory encompasses the primed-reprogramming process, where fi-
broblast cells differentiate into primed iPSC cells. The second trajectory
involves the differentiation from fibroblast to naive cells. The third
trajectory captures the differentiation of the Trophectoderm branches
during reprogramming. The fourth trajectory involves differentiation
from fibroblasts to refractory cells. Inspired by the original paper, and
considering that differentiation into refractory cells does not involve
reprogramming, we focus on the first three differentiation trajectories
of the Hrpi dataset, which comprises 27,901 cells. scTICG successfully
infers a trajectory topology consistent with original studies (Fig. 4C),
indicating its capability to accurately reconstruct complex cell de-
velopment trajectories. In terms of accuracy, due to the absence of
external information such as data collection time, the POS score for
Hrpi could not be computed. Instead, we use the pseudotime inferred



Y. Gan et al. Neurocomputing 624 (2025) 129482 
Fig. 5. Robustness analysis with 90%, 70% and 50% cell sampling rates with (A) HSMM, (B) Fibroblast, (C) HE and (D) iPSC.
Fig. 6. Robustness analysis of scTICG with different cell sampling rates on Hrpi dataset.
by a combination of CytoTRACE and Monocle3 provided in [38] as
the reference pseudotime, and calculate the SRCC score of the inferred
pseudotime ordering against this reference. scTICG achieves statisti-
cally significantly higher SRCC score(0.689, 95%𝐶 𝐼 :0.681-0.698) than
the competing methods, with an improvement of approximately 5.1%
over the sub-optimal method scTite (Fig. 4D).

3.2. Robustness analysis

We compare the robustness of scTICG with other competing meth-
ods, evaluating SRCC scores under different disturbances on multiple
datasets. Each method is assessed using the same subsamples, repeated
20 times. First, we test the robustness under different cell sampling
rates, with 90%, 70% and 50% of cells randomly sampled from the
original datasets (HSMM, Fibroblast, HE and iPSC). As shown in Fig. 5,
in these four datasets, the SRCC scores of scTICG consistently exhibit
minimal fluctuations, with average scores exceeding those of the eight
other competing methods. Subsequently, we apply scTICG to the Hrpi
dataset to further assess its robustness on more complex trajectories,
the perturbed datasets are generated by randomly sampling 90%, 70%,
50%, 30% and 20% from Hrpi dataset. As shown in Fig. 6, the fluc-
tuation range of the SRCC score of scTICG remains below 0.05 (90%:
0.740; 70%: 0.721; 50%: 0.724; 30%: 0.744; 20%: 0.697).

In addition, we analyze the robustness under different gene filtering
ratios, varying from 10% to 20%. The experimental results presented
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in Fig. 7 demonstrate that the fluctuations in SRCC scores of scTICG
across all three test datasets are small under different gene filtering
ratios, which indicates that our method remains steady under different
gene ratios. We further evaluate the robustness of scTICG with different
dimensionality reduction methods. As shown in Supplementary Figure
1, scTICG maintains robust performance with nonlinear dimensionality
reduction methods, while its performance slightly declines with linear
methods such as PCA.

3.3. Scalability analysis

To evaluate the scalability of scTICG relative to other trajectory
inference (TI) methods, we compare their running time across differ-
ent datasets. The experiment is repeated 10 times for each dataset,
and the average running time is recorded. The results presented in
Fig. 8 illustrate the running times of these methods. Generally, scTICG
demonstrates superior efficiency compared to the majority of compet-
ing methods. Moreover, scTICG enhances time efficiency by employing
a subsampling approach for datasets with a large number of cells,
such as Hrpi. Specifically, by using a heap to store the neighbor nodes
of each cell, the time complexity of reconstructing cell development
trajectory based on a greedy strategy is about 𝑂(𝐾 ⋅ 𝑛 log(𝑛)), where 𝐾
is the number of clusters and 𝑛 denotes the number of cells involved
in each trajectory reconstruction. The computational burden increases
as the number of cells grows. To address the challenge posed by the
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Fig. 7. Robustness analysis under different gene filtering ratios.
Fig. 8. Comparison of running Time across different methods (no. of cells*no. of features).
increasing volume of single-cell datasets, we adopt sampling strategy
for trajectory reconstruction.

3.4. Differential analysis

To further assess the performance of scTICG, we compare its ac-
curacy in identifying marker genes with the competing trajectory in-
ference methods on four real scRNA-seq datasets, including HSMM,
Fibroblasts, HE and iPSC. First, differentially expressed genes are fil-
tered using an absolute log2 (fold change) threshold of 1 and a p-value
threshold of 0.05 to construct volcano plots, which showcase genes
with significant expression changes during the cell development pro-
cess. Next, for each dataset, we apply tradeSeq [45], a tool for analyzing
gene expression along trajectories, to select five top differentially ex-
pressed genes along ground-truth cell development trajectory as gold
standard genes from marker genes mentioned in original studies [36,37,
46,47], with details provided in Supplementary Table 4. Gold standard
genes are genes that are known to be differentially expressed during
the biological process [14], and they are marked in the volcano plots.

Overall, scTICG can effectively identify both up-regulated and down-
regulated gold standard genes during cell development. In the dataset
HSMM, MYF5 is down-regulated during cell development, whereas
MYH3, ENO3, TNNT1 and MEF2C are up-regulated. All methods suc-
cessfully capture the trends for these genes, except TSCAN, Slingshot,
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PseudoGA and BLTSA (Fig. 9). The volcano plot analyses for Fibroblast,
HE and iPSC are respectively shown in Supplementary Figures 4, 5 and
6.

4. Discussion and conclusion

With the advancement of single-cell sequencing technologies, a
variety of computational methods have been developed for trajectory
inference. Traditional cluster-based methods often overlook the con-
tinuous nature of cellular developmental processes, treating them as a
series of discrete states. In contrast, graph-based methods recognize this
continuity but are susceptible to noise, which can distort the inferred
trajectories. To overcome these limitations, we propose scTICG, a novel
algorithm that integrates the strengths of both cluster-based and graph-
based methods to more accurately infer the trajectory of cells. Initially,
scTICG employs hierarchical clustering to partition cells into distinct
states, forming a coarse-grained trajectory using an MST constructed
from these clusters. This step establishes a backbone structure of the
trajectory. Recognizing the continuous nature of cell dynamics, scTICG
refines this trajectory by focusing on critical cells, including initial,
terminal and intermediate cells. For each pair of directly connected
cell clusters, a cell–cell graph is constructed. This graph is then pruned
to remove noise, achieved by eliminating edges that do not align
well with the overall trajectory, as determined by cosine similarity
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Fig. 9. Volcano plot of the HSMM dataset(Down-regulated genes: log2(fold change) < −1 and 𝑝-value < 0.05; up-regulated genes have a log2(fold change) > 1 and 𝑝-value
< 0.05).
between cell connections and the cluster-to-cluster trajectory. Further
refinement is achieved through the integration of the graph centrality
algorithm, which helps identify critical cells within the cell–cell graph.
These critical cells, particularly the initial and terminal ones, serve
as anchors for reconstructing the trajectory using a greedy strategy,
ensuring that the most probable developmental paths are followed.
Finally, the principal curve algorithm is applied to smooth the refined
trajectory. This smoothing step projects cells onto the trajectory, allow-
ing for the calculation of pseudotime. However, the time complexity of
trajectory reconstruction is approximately 𝑂(𝐾 ⋅ 𝑛 log(𝑛)). To address
the challenge posed by large datasets, we adopt subsampling strategy
for trajectory reconstruction. To verify the performance of scTICG in
trajectory inference, we apply it to four real scRNA-seq datasets and
one synthetic dataset, comparing its performance with that of eight
state-of-the-art trajectory inference methods. The comparative results
demonstrate that scTICG not only reconstructs cell trajectories with
high accuracy but also consistently outperforms other methods under
various evaluation metrics.
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Data availability

The datasets utilized in this study are all publicly accessible. Here
are the details regarding the sources of each dataset.

The HSMM dataset is available from the NCBI Gene Expression
Omnibus (GEO) under the accession number GSE52529.

The Fibroblast dataset can be accessed under the accession number
GSE67310.

The Hrpi dataset is available on the website http://hrpi.ddnetbio.
com/.

The HE dataset can be downloaded from Zenodo at this link http
s://zenodo.org/records/1443566/files/real/gold/human-embryos_petr
opoulos.rds?download=1.

The iPSC dataset can be accessed from https://www.pnas.org/h
ighwire/filestream/29285/field_highwire_adjunct_files/1/pnas.162141
2114.sd02.xlsx.
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