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Connected vehicles due to the high mobility and dynamic network topologies of connected vehicles require
accurate QoS that includes high throughput and low latency to assess satisfactory QoE. Existing methods
mainly focus on centralized QoS prediction while paying little attention to distributed mobile QoS prediction,
making it challenging to protect user privacy information when invoking Web services. Moreover, even
though some advanced centralized methods can be transformed into federated architectures, they often face
difficulty in capturing latent feature representations of users and services and learning personalized prediction
layers between them due to the heterogeneity of the QoS dataset. To address the above issues, we propose a
novel framework for distributed QoS prediction, called Combining Personalized Federated Hypernetworks
and Shared Residual Learning for Distributed QoS Prediction (FHR-DQP). FHR-DQP adopts the
federated averaging (FedAvg) to aggregate location-aware residual shared feature information across all
clients. Additionally, a hypernetwork is leveraged to generate personalized networks for user-service QoS
prediction in each client. These components are integrated as a hybrid framework that performs training using
a federated approach and makes personalized QoS predictions within each client. Extensive experiments are
conducted on a real-world benchmark QoS dataset called WS-DREAM, containing nearly 2,000,000 historical
QoS invocation records. Compared with both centralized and federated competing baselines, the results
demonstrate that FHR-DQP achieves the highest performance for distributed QoS prediction, when it provides
privacy-preserving of users’ QoS invocations.
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1 Introduction
With the rapid advancement of Web 3.0 and 5G edge artificial intelligence technologies, there
has been a substantial increase in the number of Internet of Things (IoT) applications. These
applications often have strict requirements for high throughput (TP) and low latency, where the
resource management poses substantial challenges due to their high mobility and the dynamic
nature of network topologies. Frequent changes in network topology and connection interruptions
complicate the maintenance of the Quality of Experience (QoE) that users expect [7, 13, 38].
To address the needs of end users, various standardization bodies and organizations are actively
involved in developing frameworks for immersive content consumption systems and metaverses,
particularly in the context of Augmented Reality (AR) and Virtual Reality (VR). In the realm
of AR/VR immersive media consumption, enhancing the QoE of users’ invoking services is of great
importance [2, 29]. Web services, a fundamental component of Service-Oriented Architecture
(SOA), encompass functions such as service discovery, selection, composition, recommendation,
and mashup creation for facilitating downstream tasks [5, 6, 8, 27, 49]. However, due to differ-
ent service providers offering a multitude of similar or functionally equivalent Web services, it
makes difficulty in selecting satisfactory Web services to meet user QoE in practical scenarios
for service consumers in real-world scenarios, such as IoT [1, 18]. To adequately meet user QoE,
it is critical to predict vacant QoS value and assess the user’s QoS expectations when invoking
Web services.

Quality of Service (QoS) is commonly used as a critical factor in describing the non-functional
characteristics of network services and plays an important role in selecting Web services with
similar or equivalent functionality. Specifically, QoS includes response time (RT), TP, availability,
cost, etc. Due to the dynamic network environment and heterogeneous geographical locations,
users may observe diverse QoS values when invoking the same Web service. Moreover, it is also
impractical and time-consuming for users to invoke all Web services in a constantly evolving
network environment and record their corresponding QoS values. Therefore, predicting missing
QoS values based on sparse user-service QoS historical invocation records and applying them to
downstream SOA scenarios has become a research hotspot [4, 23]. Figure 1 shows an intuitive real-
world example that simplifies the cloud-edge-client computing paradigm for understanding the core
components involved. It illustrates two distinct ways of predicting QoS: centralized (represented
by the red line) and distributed (represented by the yellow line). In scenarios where service users
operate terminal devices such as smart cars, mobile phones, and watches to invoke Web services,
these devices generate QoS invocation records.
In the centralized QoS prediction (CQP), client-generated QoS data is typically uploaded

directly to the central cloud center. Here, the cloud aggregates QoS invocation records from all
service users and employs collaborative filtering (CF) techniques to learn a QoS prediction model
from the collected dataset. Subsequently, it predicts QoS values for all unknown service invocations.
However, this direct data transmission approach in CQPmay lead to data leakage during the transfer
process, compromising users’ privacy. Conversely, in the distributed QoS prediction (DQP),
after terminal devices generate QoS data, each service user trains a QoS prediction model using
the collected local QoS invocation records, and then uploads the trained gradient information to
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Fig. 1. An intuitive real-world example that illustrates the differences of centralized and distributed QoS
prediction.

the cloud center. The cloud center aggregates these gradients, using methods such as averaging or
weighted averaging [30], and propagates the aggregated gradient information back to each service
user. By doing so, it helps build a shared bridge for CF, enabling continuous parameter updates
for each model until global convergence. Thus, a service user can make local QoS predictions for
unknown service invocations. In addition, techniques such as differential privacy or homomorphic
encryption are often employed to further enhance the security of gradient transmission during the
cloud parameter aggregation.

CF, as the most important technique, has received many research investigations to predict the va-
cant QoS values. CF-based QoS prediction can be categorized into memory-based and model-based
approaches. Memory-based CF approaches first calculate similarity to generate similar neighbor-
hoods of users or services, and then predict the unknown QoS based on the similar user/service
historical QoS invocations [35]. However, these kinds of methods are highly dependent on data
sparsity, and their performance is unsatisfactory when dealing with low-density QoS datasets
in real-world application scenarios. To alleviate the issue of data sparsity, model-based methods
represent the features of users and services in the latent space instead of using historical QoS
invocations directly. Specifically, these kinds of approaches begin by projecting users and services
independently into the latent space and then connecting their latent features using downstream
operations such as dot product inmatrix factorization (MF) [20, 46],multilayer perceptrons
(MLP) in neural collaborative filtering (NCF) [12, 41, 53, 54], etc.
Although existing model-based CF methods improve QoS prediction performance, they still

suffer from twofold deficiencies. First, most conventional methods primarily concentrate on CQP
problems, where user-service history QoS invocations are aggregated in a centralized manner
for model training, instead of distributing service records among users. As a result, DQP has not
been considered, making it challenging to protect the QoS privacy information of users. Second,
despite some model-based methods having adopted various advanced deep learning models for QoS
prediction, they have difficulty adapting to federated architectures and accurately extracting latent
features of users and services. Especially in the case of the non-IID dataset, the local optimization
directions of various clients will deviate from the global optimum, resulting in client drift phenomena
[26]. It is observed that the existing models in the federated environment lack deep shared feature
extraction and personalized prediction networks for data disparities across clients facing the
non-IID QoS dataset, reducing the accuracy of QoS prediction. Therefore, existing model-based
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CF methods in terms of considering privacy-preserving cannot effectively learn latent features
and personalized interactions of users and services in the non-IID QoS dataset for better DQP
performance.

To address the above issues, we propose a novel personalized federated learning (PFL) frame-
work for DQP named Combining Personalized Federated Hypernetworks and Shared Residual
Learning for Distributed QoS Prediction (FHR-DQP). The framework mainly consists of an
initialization phrase and three mutually cooperating modules. Initially, each client collaboratively
performs model training based on shared and personalized parameters transmitted by the server.
At the beginning, the client uploads the locally trained user-service shared feature extraction layer
to the server, and the server performs federated averaging (FedAvg) on these shared parameters,
where an advanced centralized residual QoS prediction model proposed by us [54] is utilized
that considers the location information of users and services. Subsequently, the client selectively
uploads the locally trained parameter difference of personalized prediction layer to the server, and
the server employs an hypernetwork (HN) to generate updated personalized prediction layer
parameters individually for each client. The above processes including shared feature extraction
and personalized network generation are repeated until global convergence. Finally, we apply the
co-trained client network to predict unknown QoS values in a distributed manner, where each
client has shared feature extraction and personalized prediction layers for better non-IID QoS
prediction performance.

To evaluate the effectiveness of FHR-DQP for DQP, extensive experiments have been conducted
on a public large-scale dataset called WS-DREAM, which consists of a total number of 1,974,675
historical user-service QoS invocations [52]. By comparing FHR-DQP with ten federated and
centralized competing baselines, the results validate that our proposed FHR-DQP receives the best
prediction accuracy on both mean absolute error (MAE) and root mean square error (RMSE).

The main contributions of this article are summarized as follows:

—We propose a novel federated personalized framework for DQP. It independently generates
personalized network parameters on the server, which protects the privacy information of
QoS invocations.

—To improve the accuracy of DQP, we extract shared features by federated aggregation with
residual learning to more effectively reveal the QoS characteristics, and leverage an HN to
yield personalized network parameters on the server to alleviate the heterogeneity of QoS
invocations across multiple users.

—Extensive experiments are conducted on a large-scale real-world QoS dataset.The experimental
results demonstrate that the proposed FHR-DQP remarkably outperforms state-of-the-art
federated approaches for DQP, even surpassing centralized baselines in the low-density QoS
dataset.

The remainder of this article is organized as follows. Section 2 defines and formulates the DQP
problem. Section 3 illustrates the overall framework of FHR-DQP and elaborates on its components.
Section 4 shows and analyses the experimental results. Section 5 reviews the related work. Section 6
discusses the computational complexity, limitations and future works. Finally, we conclude the
article in Section 7.

2 Problem Formulation
In this section, we focus primarily on the understanding of DQP problem by giving a set of formal
definitions, clarifying what the solution is to a DQP problem.
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Definition 1 (Web Service). We focus on evaluating the non-functional properties of each Web
service for QoS prediction. Let ( = {B1, B2, ..., B<} be a set of Web services where B is described by
a five-tuple B =< ��, '�,�(, !0C, !>= >. In this tuple, �� identifies the service, while the other
attributes collectively represent the location information, including region (RG), autonomous
system (AS), latitude (Lat), and longitude (Lon).

Definition 2 (Service User (Client)). A service user is someone who has used one or more Web
services. Let * = {D1, D2, ..., D=} be a set of users where each D is characterized by a five-tuple
D =< ��, '�,�(, !0C, !>= >. Here, �� identifies the user and the remaining attributes can be
collectively regarded as representing the location information.

Definition 3 (User-Service Invocation Record). A user-service invocation record is defined as a
three-tuple < D, B,~D,B >, where D ∈ * has invoked a Web service B ∈ ( , with ~D,B representing the
QoS value. A user-service invocation set. can be obtained by aggregating all the invocation records
among users, where each row represents a user’s QoS values for Web service invocations, and each
column represents the QoS values of a service invoked by service users. A tuple < D, B,~D,B > is an
element of . if the user D has invoked the service B , otherwise < D, B,~D,B >∉ . .

Definition 4 (CQP Problem). Given a set of users* , a set of services ( , and observed QoS invocation
matrix . , the CQP problem can be expressed as a five-tuple �&% =< * , (,. ,D, B >, where D is the
target user, B is the target service, and < D, B,~D,B >∉ '. The target of this problem is to predict the
missing QoS value ~̂D,B based on a CQP model. Therefore, a corresponding solution to �&% can be
denoted as < D, B, ~̂D,B >.

Definition 5 (DQP Problem). Given a set of user-service invocation submatrices. ′ = {.1, .2, ..., .=},
where = is the number of users, a DQP problem is defined as a five tuple �&% =< * , (,. ′, D, B >,
where D is a target user and B is a target service. The solution to a �&% problem is represented by
< D, B, ~̂D,B > of the target user D invoking B .
Here, the significant difference between a �&% and �&% problem is that the former can learn

the complex non-linear invocation features from the aggregated invocation matrix . , while DQP
models is limited to collaboration by their independent submatrices . ′ = {.1, .2, ..., .=}.

3 Approach
3.1 The Framework of FHR-DQP
Figure 2 is the overall framework of FHR-DQP for DQP. It consists of three crucial components:
shared feature extraction, personalized network generation and federated QoS prediction. The
process of each component in FHR-DQP is described as below.

— In the stage of shared feature extraction, a two-tower deep residual network in the neighbor-
hood-based collaborative residual learning (NCRL) model [54] is used to extract shared
features of users and services. The residual network parameters are transmitted to the server
for FedAvg aggregation. Subsequently, the client receives global average residual network
parameters from the server to facilitate local feature extraction layer updates.

— In the stage of personalized network generation, it aims to learn the personalized user-service
prediction layer parameters by applying a federated HN. The personalized prediction network
parameters for DQP are also uploaded to the server, while federated aggregation is not
performed. Instead, they are employed to update the HN to generate personalized network
parameters for individual clients, achieving a personalized update strategy in a targeted QoS
manner.
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Fig. 2. The overall framework of FHR-DQP for DQP.

— In the stage of federated QoS prediction, the converged parameters of the user-service shared
feature extraction and personalized prediction layers are integrated into each client model for
personalized QoS prediction in distributed service-oriented systems.

3.2 Shared Feature Extraction
3.2.1 Local Feature Extraction with Residual Learning. In this section, we present the forward

propagation process with residual learning in a centralized manner, whose parameters can be
divided into the shared parameter q and the personalized parameter \ for further DQP. First, we
transform the initial features for the user’s and service’s ID, RG, and AS into their corresponding
embedded feature vectors: �D�� , �D'� , �D�(

, �B�� , �B'� , �B�(
. After embedding the initial features, we

combine the above embedded features and the Lat & Lon features to obtain a user’s and a service’s
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embedded feature vectors (denoted as GD and GB ). The concatenation can be exressed as follows:

GD = Φ(�D�� , �D'� , �D�(
, D!0C , D!>=) =


�D��
�D'�
�D�(

D!0C&!>=

 , (1)

GB = Φ(�B�� , �B'� , �B�(
, B!0C , B!>=) =


�B��
�B'�
�B�(

B!0C&!>=

 , (2)

whereΦ denotes the concatenation operation; GD and GB represent a user’s and a service’s embedded
feature vectors, respectively. These embedded feature vectors are fed into the feature extraction
layer, where residual networks are leveraged to extract latent features of the user and service,
solving the problem of neural network performance degradation caused by increasing layers.
Inspired by NCRL [54], we replace the convolution kernel with a modified MLP residual unit
to learn the latent feature representation of the user and service, instead of using conventional
convolutional layers [10] in the residual network. The residual feature extraction layer consists of a
set of residual units for both the user and service. Each of these residual units is composed of two
non-linear layers and an identity shortcut. The input feature vector of the residual unit is added
back after being passed through the two non-linear layers. Formally, the feature propagation and
aggregation of the residual unit for the user or service is given by:

.ℎ =Wℎ
060 (Gℎ) + bℎ0 , (3)

/ℎ =Wℎ
160 (.ℎ) + bℎ1 , (4)

Gℎ+1 = /ℎ + Gℎ, (5)

where Gℎ is the input of the ℎth residual unit and Gℎ+1 is the output of the ℎth residual unit; 60
represents the GELU activation function [14], Wℎ

{0,1} ∈ q and bℎ{0,1} ∈ q are the parameters in the
ℎth residual layer.

Consequently, given the embedding vector GD and GB , the latent features can be extracted and
representeded as follows:

G ′D = '!�D (GD), (6)

G ′B = '!
�
B (GB ), (7)

where '!�D and '!�B represent the functions of residual layers with � Residual Units in user-tower
network and service-tower network, respectively. G ′D and G ′B are the extracted latent features of a
user and a service at the last residual unit. In shared residual learning, the user tower network
and service tower network are designed with the same multi-layer architecture to extract latent
features of users and services, and they can be trained independently and in parallel through
specific network hyperparameter optimization. These features are concatenated and fed into an
MLP transformation, as shown below:

-D,B = Φ(G ′D, G ′B ) =
[
G ′D
G ′B

]
, (8)

~̂D,B =W$-D,B + b$ , (9)
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Fig. 3. Shared feature extraction based on federated aggregation.

where Φ represents the concatenation operation.W$ ∈ \ and b$ ∈ \ are weight matrix and bias
vector of user-service prediction layer, and ~̂D,B is predicted QoS when a target user D invokes a
target service B .

3.2.2 Federated Shared Residual Learning. In this section, we utilize federated learning to jointly
train the shared feature extraction layer of users and services while preserving local data privacy. In
the edge computing environment, services are deployed near mobile users on edge nodes through
distributed computing mode. Furthermore, the privacy information of both users and service
invocation records are securely stored on edge nodes or terminal devices [28]. Since users and
services have similar location information such as RGs, ASs and Lat & Lon, all clients have the
shared feature space. Therefore, we share the feature extraction layer across clients to represent
user and service features, enabling more efficient extraction of shared user-service invocation
features.
Figure 3 illustrates the process of shared feature extraction based on FedAvg aggregation. For

client D, the shared feature extraction layer parameters are trained using local data GD on the client
and averaged on the server to learn the global parameter q . The pseudocode involved in the training
and FedAvg aggregation is detailed in Algorithm 1. At the start of each training round, the server
sets the client participation rate A and then selects A= clients from all available clients to participate
in the current round. First, the server sends the initialized parameters to each of the selected clients
D ∈ ZC . Each clientD ∈ ZC initializes its local model using the global parameters and then performs
local training on the user-service feature extraction layer. The local training process for each epoch
is expressed as follows:

qCD ←− G(qCD, [, GD), (10)

where G denotes the optimization algorithm used for gradient descent during model training
and we use Adam optimizer [19] to update all the parameters that need to be optimized in FHR-
DQP. qCD refers to the model parameter of client D in the C th round, [ is the learning rate for model
training, and GD represents the local data of clientD. After completing the local training, the updated
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Algorithm 1: Shared Feature Extraction based on Federated Aggregation
Input: A is the fraction of clients, = is the number of clients, ) is the federated training

rounds; GD is the privacy data of client D, � is the client training epochs, [ is the
client learning rate

Output: Shared Feature Global Residual Network q)
1 Initialize q0

2 for C = 1, ...,) do
3 ZC ←− random set of A= clients
4 foreach client D(D ∈ ZC ) do
5 D receive qC from Server: qCD ←− qC
6 for local epoch 4 = 1, 2, ..., � do
7 ClientUpdate: qCD ←− G(qCD, [, GD)
8 end
9 ΔqCD ←− qCD − qC

10 D upload ΔqCD to Server
11 end
12 qC+1 ←− qC − 1

A=

∑
D∈ZC ΔqCD

13 end
14 return q)

parameter difference denoted as ΔqCD is uploaded to the server for a single update of the global
model.

After receiving model parameters from the selected clients, the FedAvg aggregation performs on
these model parameters in the server is expressed as:

qC+1 ←− qC − 1
A=

∑
D∈ZC

ΔqCD, (11)

where the updated global model parameter qC+1 is returned to the clients who participated in the
current round. These clients use the updated parameter for further model training in subsequent
iterations.

3.3 Personalized Network Generation
Although the federated aggregation algorithm in shared feature extraction discussed in the last
section combines client-side user and service features, enabling feature sharing among clients
without exposing local data and improving model efficiency, the global update based on federated
aggregation remains inadequate for the personalized QoS prediction layer between users and
services. The primary reason is the large variance in service invocation records among clients,
which undermines the convergence of the federated aggregation model. Specifically, in the WS-
DREAM dataset, user 1 contains 573 service invocation records while user 228 only has 353. In
addition, the average RT for service invocations from user 1 is 2.95 seconds, compared to only 0.47
seconds for user 316. The disparity in service invocation records among clients is considerable
in terms of both data quantity and distribution. Therefore, adopting FedAvg aggregation on the
non-IID QoS dataset is highly likely to result in client drift, which ultimately hampers the stable
convergence of the global model [17].

In this section, HNs are employed to personalize the parameters of the user and service feature
prediction layer. HNs are neural network models that generate parameters for another neural
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Fig. 4. Personalized network generation based on HNs.

network [9], whose weights can dynamically change based on input conditions, thus producing
personalized model parameters for each client. HNs are well-suited to learning a set of personalized
models with the same structure, generating desired target networks based on input conditions to
optimize personalized federated aggregation in non-IID scenarios [34].
The process of personalized network generation based on HNs is summarized in Figure 4. For

each client D, the user-service invocation features XD can be obtained by the process in Figure 3 (or
Section 3.2.2). After training the personalized prediction layer locally, the difference in parameter
update Δ\D is uploaded to the HN, which can dynamically output personalized model parameters
\D for different clients. The process consists of three steps and the pseudocode detailed in this
process is given in Algorithm 2. Begins with the initialization of the HN model parameters, the
personalized parameters for client D are generated as follows:

\D =H(4u ;k ), (12)

where4u is the embedding vector of clientD in the server, and \D represents the model parameters of
user and service personalized prediction layer in client D. Subsequently, the personalized prediction
layer of the client is initialized using the parameters \D to generate 5D (· ;\D), which represents the
user-service personalized prediction neural network. The predicted QoS value is derived by the
personalized prediction layer, by the following expression:

ŷD,B = 5D (xD,B ;\D), (13)

where xD,B denotes the invocation features when user D invokes service B , and ŷD,B is the corre-
sponding QoS prediction value; 5D represents the identity function. During local training, the MAE
is utilized to calculate the loss function.

LD =
1
 

 ∑
B=1

��ŷD,B − yD,B �� , (14)

After completing the local training process, the parameter difference Δ\D between these new
parameters \̄D and the previous ones \D are uploaded to the server. At the server-side, the parameters
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Algorithm 2: Personalized Network Generation based on Hypernetworks
Input: ) is the federated training rounds, W is the hypernetworks learning rate; XD is the

personalized feature of client D, � is the client training epochs, [ is the client
learning rate

Output:The Parameters of Personalized Prediction Layer {\1, \2, ..., \=}
1 Initialize model parameterk of hypernetworks
2 for C = 1, ...,) do
3 foreach client D ∈ ZC do
4 \D ←− H(4D ;k )
5 \̄D ←− \D
6 for 4 = 1, 2, ..., � do
7 foreach training batch B ⊆ {XD, yD} do
8 \̄D ←− \̄D − [∇\̄DL(\̄D ;B)
9 end

10 end
11 Δ\D ←− \̄D − \D
12 D upload Δ\D to Server
13 Server updatek and 4D :
14 k ←− k − W∇k\>D Δ\D
15 4D ←− 4D − W∇4Dk>∇k\>D Δ\D
16 end
17 end

of the HNk and the embedding vectors4D are updated based on Equations (16) and (17), respectively:

Δ\D ←− \̄D − \D, (15)

k ←− k − W∇k\>D Δ\D, (16)

4D ←− 4D − W∇4Dk>∇k\>D Δ\D, (17)

where W represents the learning rate of the HN, and W∇k\>D Δ\D and W∇4Dk>∇k\>D Δ\D indicate the
gradient calculated by the chain rule in back propagation. Therefore, the HN parameters including
parametersk,41, · · · ,4= are updated according to Algorithm 2.

3.4 Federated QoS Prediction
FHR-DQP employs FedAvg aggregation to optimize residual layer parameters of user and service
feature extraction globally and utilizes HNs to generate personalized parameters of the user
and service prediction layer, enabling personalized QoS prediction in distributed scenarios. As
mentioned in Sections 3.2.2 and 3.3, FHR-DQP requires learning two sets of model parameters for
federated QoS prediction: the shared parameter q of the user and service feature extraction layer
and the personalized parameter \D of the user and service prediction layer. The above federated
QoS prediction process for a given client D can be represented as follows:

ŷD = FD (xD ;q ;\D), (18)

where FD represents the federated QoS prediction model of client D. Each client has its IID data
distribution in the federated QoS prediction scenario, thus the overall optimization objective of
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Table 1. Statistics of WS-DREAM Dataset

Item name Value

Users 339
Services 5,825
Service Invocations 1,974,675
Users’ RGs 31
Users’ ASs 137
Services’ RGs 74
Services’ ASs 992
Services’ Providers 2,699

FHR-DQP is:

min
q,\1,...,\=∈R3

� (q ;\ ) := 1
=

=∑
D=1

E(x,y)∼DD
[LD (q ;\D ; x, y)], (19)

where DD denotes the data distribution of client D and LD denotes the loss function on client D.
Here, MAE is used as the loss function during training in the article, as shown below:

LD (q ;\D ; x, y) =
1
 

 ∑
B=1

|FD (xD,B ;q ;\D) − yD,B |, (20)

where  denotes the number of QoS samples on client D, xD,B and yD,B denote the Bth training
sample data on client D.

4 Experiments
4.1 Experimental Setup and Dataset
All the experiments are carried out on our workstation equipped with two NVIDIA RTX 4090
GPUs, two Intel(R) Xeon(R) Silver 4210R @2.40 GHz CPUs and 1.0TB RAM. The components of
FHR-DQP in the experiments are implemented by Python 3.7.15 with Pytorch 1.13.1. To validate
the effectiveness of the DQP performance of FHR-DQP, we conduct extensive experiments on a
real-world Web service QoS dataset called WS-DREAM1 [52], which has been widely used for
service QoS prediction. Here, it consists of two types of service invocation QoS criteria, including
RT and TP, which collected from 339 users and 5,825 Web services with 1,974,675 historical QoS
invocation records. In addition, the contextual location information is provided in RT and TP, such
as RG, Lat, and Lon. Comprehensive statistics of the QoS dataset is shown in Table 1.

The QoS dataset of RT or TP can be formalized as a user-service QoS matrix. In this matrix, each
row represents a collection of QoS values that a user invokes from all services, and each column
represents a set of QoS values that a service has been invoked by all users. Due to the sparsity of
user-service interactions in real-world scenarios, QoS dataset is trained with four different low
densities: 2.5%, 5%, 7.5%, and 10% on RT and TP, respectively. For the comparisons of QoS prediction
accuracy, remaining QoS samples under each density are treated as testing data in the experiments.

1https://wsdream.github.io/
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4.2 Evaluation Metrics
MAE and RMSE are used as the two evaluation metrics to measure the accuracy of QoS prediction
among the competing approaches in the experiments. MAE and RMSE are defined as follows:

"�� =

∑
D,B |yD,B − ŷD,B |

#
, (21)

'"(� =

√∑
D,B (yD,B − ŷD,B )2

#
, (22)

where yD,B is the original QoS value of a target user D invoking a service B and ŷD,B is the predicted
QoS; # is the number of test samples of predicted QoS values.

MAE reflects the overall accuracy of QoS prediction by averaging absolute deviations from the
original QoS values. Compared with MAE, RMSE is more sensitive to outliers as it assigns relatively
higher weights to large errors in predicted QoS values. Smaller deviations on MAE and RMSE
indicate better performance of QoS model prediction.

4.3 Competing Approaches
To evaluate the effectiveness of FHR-DQP, we compare it with ten competing approaches, including
three Memory-based, five Model-based and two FL-based methods. They are described as below.

—Memory-Based Methods:
(i)UPCC [35]: It is a user-based CQP method that calculates a set of similar users as the
neighborhood of a target user by Pearson Correlation Coefficient (PCC), and combines
the average QoS values of the target user with the deviation values of similar users to
achieve QoS prediction.

(ii) IPCC [51]: It is an item-based CQP method that calculates a set of similar items as the
neighborhood of a target item by PCC, and combines the average QoS values of the target
item with the deviation values of similar items to achieve QoS prediction.

(iii)UIPCC [51]: It is a hybrid CF method by the combination of UPCC and IPCC, which applies a
weighting coefficient to adjust their relative importance. It is a memory-based representative
approach for CQP.

—Model-Based Methods:
(i)PMF [31]: It is a variant MF method for CQP, which leverages prior Gaussian distribution
to optimize hyperparameters in probability model.

(ii)FM [44]: It is a reinforced MF method for CQP, which integrates the linear regression model
and the MF model to model multiple variable interactions with linear complexity.

(iii)NCF [12]: It is an advanced NCF method that combines multi-layer perceptron and gen-
eralized MF, which learns complex non-linear interactions between users and services to
achieve CQP.

(iv)NDMF [53]: It is an advanced neighborhood-aware NCF method, which integrates user-
selected neighborhoods into collaborative loss function via a deep neural network (DNN)
to achieve neighborhood-integrated CQP.

(v)DNM [41]: It is an advanced contextual-aware NCF method, which maps contextual features
into a shared latent space and integrates their high-order interactions through DNN to
achieve multi-attribute CQP.
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Table 2. Parameter Settings

Parameter Value Description

A 30% the fraction of clients on each round
) 3,000 the federated training rounds
� 5 the number of client epochs
B −1 the batch size of client network
[ 0.005 the learning rate of client network
W 0.005 the learning rate of HNs
E 16 the embedding size of HNs
N <200, 200, 200> the structure of HNs
R <128, 256, 256, 64> the structure of residual layer

—FL-Based Methods:
(i)ENMF [47]: It is a federated MF method for DQP that preserves user data privacy without
aggregating raw QoS data for each client. It is a recent approach for DQP and is applied as
an FL-based baseline.

(ii)FedNCF : It is a federated QoS prediction method based on NCF [12] for DQP. We apply
FedAvg to federate NCF, where all parameters of the client model are included in the
parameter aggregation phase.

4.4 Experimental Results and Analyses
To guarantee the fairness of comparison, we tune the parameters of all CQP approaches directly
as they are suggested with the best performance in reference benchmark experiments, and the
parameter settings of all federated QoS prediction approaches are shown in Table 2. The structure
of HNsN is <200, 200, 200> and residual layer R is <128, 256, 256, 64>. The learning rate of client
network [ is 0.005 and the learning rate of HNs W is 0.005. We tune the hyperparameter fraction of
clients on each round A in {10%, 30%, 50%, 100%}, the number of client epochs � in {1, 5, 10, 20}, the
embedding size of HN E in {2,4,8,16,32} and the batch size of client network B in {32,64,128,-1},
where B = −1 indicates that the client’s local data is treated as a single batch. All approaches are
trained on RT and TP training datasets, and QoS prediction performance is evaluated by comparing
MAE and RMSE on the test samples. To prevent deviations, we run FHR-DQP and the competing
methods three times to calculate the average results of predicted QoS for comparative analysis to
reflect the fairness of the experiments.

Tables 3 and 4 show the QoS prediction experimental results on RT and TP among both centralized
and federated competing baselines. The best results of distributed and centralized methods each
column are marked in the form of dark and underline, respectively. It is observed that all competing
methods demonstrate a reduction on MAE and RMSE as the QoS density increases from 2.5% to 10%
on RT and TP, indicating the accuracy improvement in the QoS prediction. The improvement can
be attributed to the increase in the number of available historical QoS, facilitating the calculation of
similar neighborhoods in memory-based CF methods and enabling better learning of the invocation
relationships between users and services during model training in model-based CF methods.

UPCC, IPCC, and UIPCC, as traditional memory-based CF methods, rely heavily on calculating
similar users and services based on historical QoS invocations. As a result, they perform poorly in
QoS prediction performance because they are easily affected by the density of the user-service QoS
invocation matrix. As the traditional model-based MF method, PMF introduces a probabilistic model
to achieve the decomposition of user and item features, which partially alleviates the sparsity of
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Table 3. Performance Comparisons of QoS Prediction on RT

Methods Density = 2.5% Density = 5% Density = 7.5% Density = 10%
MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

UPCC 0.7679 1.7888 0.8465 0.6166 1.5287 0.6795 0.5724 1.4197 0.6322 0.5550 1.3800 0.6120
IPCC 0.7380 1.7749 0.8105 0.6727 1.6981 0.7407 0.6471 1.6728 0.7147 0.6261 1.6367 0.6892
UIPCC 0.7515 1.7549 0.8261 0.6079 1.5023 0.6714 0.5670 1.4064 0.626 0.5502 1.3684 0.6058
PMF 0.6492 1.6149 0.7150 0.5753 1.4422 0.6332 0.5252 1.3370 0.5786 0.4954 1.2778 0.5455
FM 0.6876 1.5321 0.7566 0.6203 1.4406 0.6837 0.5592 1.3281 0.6165 0.5392 1.3052 0.5947
NCF 0.5444 1.5472 0.6007 0.4652 1.3904 0.5115 0.4159 1.3583 0.4567 0.3783 1.3040 0.4170
NDMF 0.5393 1.4036 0.5935 0.4880 1.3495 0.5365 0.4416 1.2793 0.4862 0.4304 1.2349 0.4739
DNM 0.4777 1.4829 0.5253 0.4147 1.4274 0.4553 0.3843 1.3745 0.4228 0.3628 1.3567 0.3997
ENMF 0.7031 1.7358 0.7752 0.6104 1.5048 0.6717 0.5254 1.3446 0.5792 0.4965 1.2821 0.5472
FedNCF 0.5926 1.6108 0.6539 0.4923 1.4780 0.5414 0.4606 1.3815 0.5059 0.4315 1.3747 0.4754
FHR-DQP 0.4389 1.3855 0.4835 0.3988 1.2990 0.4392 0.3879 1.2897 0.4279 0.3650 1.2532 0.4029
Gains 8.12% 1.29% 7.96% 3.83% 3.74% 3.54% −0.94% −0.81% −1.21% −0.61% −1.48% −0.80%

Table 4. Performance Comparisons of QoS Prediction on TP

Methods Density = 2.5% Density = 5% Density = 7.5% Density = 10%
MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

UPCC 38.84 93.33 0.8151 25.42 65.68 0.5362 22.96 58.83 0.4827 21.25 57.24 0.4465
IPCC 37.25 97.50 0.7827 32.96 89.85 0.6898 31.02 87.56 0.6521 29.76 84.90 0.6277
UIPCC 36.87 91.85 0.7777 25.18 65.37 0.5293 22.93 59.17 0.4820 22.43 57.56 0.4720
PMF 30.18 74.67 0.6349 24.20 56.03 0.5090 22.52 55.97 0.4730 19.83 51.75 0.4175
FM 28.57 72.30 0.6020 21.59 57.60 0.4521 19.47 50.51 0.4086 17.69 48.62 0.3731
NCF 24.21 64.15 0.5066 18.68 54.65 0.3921 15.88 48.38 0.3327 14.40 46.22 0.3013
NDMF 20.31 58.17 0.4275 16.38 50.96 0.3451 15.28 47.60 0.3215 13.93 43.91 0.2934
DNM 18.29 65.65 0.3851 14.85 59.33 0.3125 13.82 56.55 0.2913 12.92 54.50 0.2713
ENMF 31.24 76.93 0.6540 26.92 68.86 0.5661 24.64 56.04 0.5174 19.62 53.37 0.4135
FedNCF 24.38 70.01 0.5125 18.52 57.27 0.3896 17.42 52.83 0.3673 16.02 51.40 0.3354
FHR-DQP 17.26 55.52 0.3631 14.63 48.81 0.3082 13.72 46.27 0.2881 13.16 44.65 0.2758
Gains 5.63% 4.56% 5.71% 1.48% 4.22% 1.38% 0.72% 2.79% 1.10% −1.86% −1.69% −1.66%

user-service QoS invocation relationships. Compared with traditional memory-based CF methods,
it demonstrates better QoS prediction performance. Additionally, FM focuses more on learning
linear feature interactions and achieves better QoS prediction performance than MF. To further
improve QoS prediction accuracy, advanced model-based neural CF methods are designed to model
the deep non-linear interaction relationships between users and services. NCF employs an MLP
to learn the non-linear interaction relationships from the embedding feature vectors of users and
services. Although NCF outperforms traditional model-based CF methods, it remains inferior to
NDMF and DNM because NCF neglects location information when extracting the latent features of
users and services. NDMF considers the location information of users and calculates similar users
as neighbors, which is integrated with the loss function to train the QoS prediction model, leading
to significant prediction performance improvement on RMSE across all densities. DNM makes full
use of QoS location information during the initial feature embedding and then integrates it into
an MLP network to better capture implicit non-linear interaction relationships. Compared with
NCF and NDMF, DNM achieves the best performance on MAE even though it performs relatively
poorly on RMSE.
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Table 5. Performance Comparisons of Our CQP and DQP Approaches on RT and TP

QoS Methods Density = 2.5% Density = 5% Density = 7.5% Density = 10%
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

RT CQP 0.4220 1.3508 0.3655 1.2904 0.3458 1.2657 0.3459 1.2400
DQP 0.4389 1.3855 0.3988 1.2990 0.3879 1.2897 0.3650 1.2532

TP CQP 16.44 53.56 13.84 47.57 13.06 45.09 12.27 42.51
DQP 17.26 55.52 14.63 48.81 13.72 46.27 13.16 44.65

Table 6. Results of Ablation Experiments on RT

Methods Density = 2.5% Density = 5% Density = 7.5% Density = 10%
MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

FR-DQP 0.4745 1.4589 0.4277 0.5234 1.3455 0.4709 0.4089 1.3279 0.4508 0.3855 1.2941 0.4248
FH-DQP 0.5076 1.4244 0.5576 0.4557 1.4042 0.5028 0.4286 1.3856 0.4736 0.4056 1.3409 0.4467
FPR-DQP 0.4586 1.3970 0.5055 0.4089 1.3425 0.4498 0.3817 1.2995 0.4212 0.3793 1.2761 0.4190
FHR-DQP 0.4389 1.3855 0.4835 0.3988 1.2990 0.4392 0.3879 1.2897 0.4279 0.3650 1.2532 0.4029

Table 7. Results of Ablation Experiments on TP

Methods Density = 2.5% Density = 5% Density = 7.5% Density = 10%
MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

FR-DQP 17.79 56.03 0.3747 15.06 49.84 0.3194 14.06 47.19 0.2966 13.72 46.42 0.2921
FH-DQP 20.29 59.22 0.4245 18.20 55.51 0.3831 17.03 53.26 0.3575 16.20 50.15 0.3398
FPR-DQP 17.73 56.90 0.3733 14.99 49.31 0.3346 14.01 47.03 0.3158 13.89 46.29 0.3093
FHR-DQP 17.26 55.52 0.3631 14.81 48.81 0.3082 13.72 46.27 0.2881 13.16 44.65 0.2758

As the QoS density increases from 2.5% to 10% on RT and TP, it can be observed that all federated
learning methods achieve lower MAE and RMSE. This is because with increased QoS density, there
are more QoS invocation records available for each client to train their local model, leading to
better trained models that improve the federated QoS prediction accuracy. FHR-DQP improves the
QoS prediction accuracy at all densities in comparison to EFMF and FedNCF, demonstrating the
advantage of its PFL framework for DQP. Although FHR-DQP exhibits slightly worse performance
in certain high QoS density scenarios, such as when TP density is equal to 7.5% or 10% on MAE
compared to DNM, and 10% on RMSE compared to NDMF, it generally outperforms centralized
baselines on both RT and TP. The possibility [16, 32] is that centralized competing baselines are
better able to capture strong collaborative relationships in high-density datasets, whereas federated
methods are more likely to fall into unpredicted suboptimal points when dealing with larger
amounts of non-IID QoS datasets. As shown in Table 5, although there is a decrease in the accuracy
of our federated approach DQP compared to our centralized approach CQP, the relatively slight
decrease highlights the advancement of the proposed distributed federated framework in sustaining
the effectiveness of missing QoS prediction.

4.5 Ablation Study and Hyper-Parameters Impact
4.5.1 Ablation Study. Ablation experiments are conducted to validate the effectiveness of FHR-

DQP proposed in this article. Tables 6 and 7 report the results of ablation experiments among FHR-
DQP and its three variants, respectively. In the experiments, FR-DQP uses the FedAvg to perform
global updates on all parameters of the model, which is the most commonly used aggregation
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algorithm in federated learning. Although FR-DQP is facilitate to deploy, it requires consistent
data distribution across different clients to achieve satisfactory QoS prediction performance. In
real-world scenarios, data distributions on different clients often vary considerably, resulting in the
client drift problem and a significant QoS performance drop when applying the FedAvg. FH-DQP
employs an HN to perform personalized updates on all parameters of the model without shared
feature extraction, which severely undermines collaborative learning of shared features. It can be
observed that FR-DQP is vulnerable to data heterogeneity, while FH-DQP has the worst prediction
performance mainly because it ignores the common information of user and service features.
Specifically, due to the fact that QoS network geographic information characteristics do not vary
with different users, FH-DQP treats all parameters in the user network as personalized parameters,
neglecting the common characteristics brought about by QoS network geographic information.
For instance, when different users are located in the same AS, the inherent characteristics of that
AS should be the same. Consequently, FH-DQP performance is inferior to the FR-DQP. FPR-DQP
is a CQP approach based on the FedProx algorithm, which improves and optimizes the FedAvg
for federated parameter aggregation. By comparing with FR-DQP and FPR-DQP, the effectiveness
of the HN is demonstrated. In addition, as the amount of data increases, the HN can be applied
in resource-constrained environments by deploying a large-scale model on the server side. With
the consideration of both residual FedAvg update and HNs generation, FHR-DQP exhibits the best
performance under different QoS densities.

4.5.2 Impact of the Fraction of Clients. In real-world scenarios, there are numerous clients
connected to the server, making it difficult to aggregate model parameters from all clients during
federated learning. Typically, a random subset of clients participate in federated training and
aggregation based on the participation rate in each federated round. To test the performance impact
of client participation rate on the model, we set its value as 10%, 30%, 50%, and 100% under different
QoS densities, respectively, and the experimental results are shown in Figure 5.
It can be seen that as the client participation rate increases, both MAE and RMSE generally

show a decreasing trend, because when the client participation rate is too low, the small number
of training samples may lead to underfitting of the federated model. However, when all clients
participate in every round of federated training, it does not significantly improve the prediction
accuracy of the federated model. In some cases, it may even result in decreased performance, such
as an increased MAE value on TP at 5% density. Although increasing the client participation rate
requires longer federated training time, it does not yield significant QoS performance improvement.
As a result, it is generally recommended to set the client participation rate between 30% and 50% to
achieve better QoS prediction performance.

4.5.3 Impact of the Depth of Hypernetworks. An HN is a neural network model that generates
parameters for another neural network and is used to generate network parameters for the person-
alized user-service prediction layer in FHR-DQP. The generated network parameters vary with the
depth of the HNs, which in turn affects QoS prediction performance. To test the performance impact
of HNs with different depths on QoS prediction, we conduct experiments with depths ranging
from 1 to 5 with a fixed number of 200 neurons per layer under different QoS densities, and the
experimental results are shown in Figure 6.
It is observed that as the QoS density increases, the network generated by the HN can better

match the actual data distribution, leading to improved QoS prediction accuracy. As the number of
HN layers increases, MAE and RMSE generally show a decreasing trend, followed by an increasing
trend. Specifically, the decreasing trend reaches its peak when the depth increases from 1 to 3, and
then the accuracy decreases when it increases from 3 to 5. The main reason for this phenomenon is
that when using an HN with a small number of MLP layers, fewer parameters are insufficient to
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Fig. 5. Performance impact of A on FHR-DQP under different QoS densities.

learn complex interaction relationships. Conversely, when the number of MLP layers is large, it may
lead to an overfitting problem of network parameters. Both HN situations in HN are not beneficial
to generating interaction parameters between users and services for QoS prediction. Therefore,
considering the QoS prediction performance under different QoS densities and the scale of the HN,
the HN depth is recommended to be 2 or 3 to achieve the optimal QoS prediction performance of
FHR-DQP.

4.5.4 Impact of the Number of Client Epochs. The number of local training epochs determines
the convergence efficiency of the client model. In theory, the more epochs local training has, the
better the convergence efficiency of the client model will be. However, the risk of overfitting in the
global model increases as the client model reaches its convergence parameters in federated learning
[40]. To test the influence of the number of local training epochs on prediction performance, we
vary its value by 1, 5, 10, and 20 with 2.5% QoS density, respectively, and the results are shown in
Figure 7.

When the epoch is set to 1 and then the federated aggregation is applied, both MAE and RMSE
exhibit an oscillating trend, indicating that it is challenging for the model to converge. The primary
reason for this phenomenon is that the number of local training epochs is limited, hampering
the convergence of the client model. When the epoch is set to 5, 10, or 20, MAE and RMSE tend
to stabilize, indicating that the global model has converged. Nevertheless, the final convergence
performance varies across the three different client epoch settings. Among them, the fitting ability
of the global model is best when the number of epochs is set to 5 or 10 on RT, and the model shows
the supreme fitting ability when running repeatedly for 5 epochs on TP. In addition, it can be seen
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Fig. 6. Performance impact of |N | on FHR-DQP under different QoS densities.

that the prediction performance of the global model deteriorates gradually as the number of client
epochs increases. The main reason is that the global model overfits when the client model receives
too many training iterations, reducing its prediction performance. Based on the above analysis,
when the number of epochs is set to 5 in our experiments, FHR-DQP achieves the best prediction
accuracy.

5 Related Work
5.1 CQP
5.1.1 Memory-Based Methods. This kind of approaches firstly computes similarities between

users or services, and then predicts unknown QoS by calculating average QoS and deviation
migration based on historical QoS invocations. Shao et al. [35] introduced a user-based CF approach
that predicts QoS values by finding similar users through PCC. Zheng et al. [51] proposed a
hybrid CF approach called WSRec, which combines user-based and service-based CF by computing
predicted QoS values with an adjusted weighting coefficient. Sun et al. [37] and Wu et al. [43]
proposed enhanced similarity calculation algorithms for QoS prediction. Sun et al. introduced a
normalization technique called normal recovery, whereby the QoS values of users are scaled to the
same range to unify similarity across different multi-dimensional latent spaces. Wu et al. proposed a
ratio-based approach to calculating user or service similarity. Chen et al. considered a wide range of
QoS data and integrates it into a CF model by using a Top-K strategy to identify similar neighbors
and combining bias information to generate QoS predictions. However, memory-based approaches
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Fig. 7. Performance impact of ) on FHR-DQP under different client epochs.

face a critical challenge due to the sparsity of historical QoS invocations, which substantially
undermines their QoS prediction performance in real-world applications.

5.1.2 Model-Based Methods. MF and its variants are widely used as traditional model-based
methods for QoS prediction, which directly embed user/service ID as a vector and model their linear
interactions with inner product. Zhang et al. [46] designed a variant of MF named non-negative
matrix factorization (NMF) by enforcing a non-negativity constraint in the linear model. Mnih
et al. [31] proposed probabilistic matrix factorization (PMF), which is another variant of MF that
introduces a probability model to optimize the MF model. NMF and PMF enhance QoS prediction
performance remarkably compared to MF. To further improve QoS prediction accuracy, researchers
have proposed hybrid models that integrate neighborhood-based approaches with MF. Li et al. [25]
proposed a location-aware reputation-based MF model for QoS prediction. which identifies the user
neighborhood based on user’s reputation and geographical information to reinforce the feature
representation of users and services. Compared to memory-based approaches, MF and its variants
can better predict vacant QoS by learning linear interaction relationships between latent features of
users and services. Nevertheless, they cannot effectively capture the implicitly complex non-linear
interaction relationships from user-service historical QoS invocations, resulting in unsatisfactory
accuracy of QoS prediction.
Deep learning approaches have been widely used to solve QoS prediction problems. NCF [11]

leverages an MLP to learn the interactive function of non-linear relationships, which has been
applied for effective QoS prediction. Recent studies have proposed various deep learning models
based on NCF to further improve QoS prediction accuracy. Wu et al. [41] proposed a deep neural
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model (DNM) that considers multiple attributes of users and services, where contextual features
are mapped into a shared latent space and their high-order interactions are captured through an
MLP network. Xia et al. [45] proposed a QoS prediction approach that introduces implicit and
explicit features into the initial dense vector representation and utilizes a convolutional neural
network to compress and optimize the procedure of feature extraction. Li et al. [22] proposed a
topology-aware neural (TAN) model that introduces network topology structure to solve the
QoS prediction problem. By incorporating the network topology information, the TAN model can
effectively capture the complex relationships among users and services. Zou et al. [54] proposed
an NCRL model that utilizes a location-aware two-tower deep residual network for collaborative
prediction, which is applied as the client model of our FHR-DQP.

Thesemodels have shown significant performance improvements for QoS prediction by effectively
learning the complex non-linear interactive relationships among users and services. Although
extensive deep learning models have been studied to enhance the accuracy of QoS prediction, most
of them concentrate on developing a CQP model, neglecting the privacy-preserving significance of
user-service QoS invocations.

5.2 PFL
Heterogeneous datasets are widespread in real-world applications, and many efforts in PFL [36]
have been devoted to addressing the theoretical and practical challenges when applying federated
learning to the non-IID dataset. PFL can be broadly classified into two categories: global model
personalization and local model personalization.

There are two main global model personalization strategies: data-based and model-based. Data-
based methods employ data augmentation to expand heterogeneous datasets. Zhao et al. [50]
proposed data sharing strategies for federated learning by creating a small subset of data that
is globally shared across all edge devices, which reduces the risk of overfitting to local data and
improves prediction performance. Wu et al. [42] proposed a generative convolutional autoencoder
for personalized health monitoring, which refines the model with a generated class-balanced dataset
from the user’s personal data. Besides, client selection mechanisms are also designed to sample from
more IID distributed data to improve the global model generalization. Wang et al. [39] proposed
a mechanism based on a reinforcement learning framework for device selection in federated
learning, which selects a subset of devices in each communication round to maximize a reward
that encourages the increase of validation accuracy and penalizes the use of more communication
rounds. Model-based methods typically implement regularization between global and local models
or apply contrastive learning (CL) to close the distance between local and global models. Li et al.
[24] performed CL at the model level, which utilize the similarity between model representations
to correct the local training of individuals. In addition, some researchers introduced meta-learning
and transfer learning to accelerate the convergence speed of the global model and improve the
effectiveness of local model personalization [16, 21].

Local model personalization strategies can be divided into architecture-based and similarity-based
approaches. Architecture-based methods utilize parameter decoupling to train model networks
locally to perform personalized tasks for specific scenarios [3], whose parameters are not sharedwith
the server. Li et al. [21] enabled a personalized model architecture by using knowledge distillation
[15] to select different network models based on multiple training objectives. Similarity-based
methods produce personalization by establishing a relationship model between clients. Sattler et al.
[33] clustered clients into different client groups and trained corresponding federated models on
each homogeneous client group.
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Considering the distributed and privacy data characteristics of user-service QoS invocation
records and the heterogeneity of data across clients, we adopt a personalized federated HN frame-
work to train personalized prediction layers collaboratively, significantly improving the perfor-
mance of DQP.

6 Discussion and Future Work
6.1 Computational Cost and Communication Expenses

(i)Computational Cost . HN updates impose additional computational consumption on the server,
increasing the overall computational complexity and resource requirements. Specifically, it
mainly depends on the number of participating service users and the network size of the
HN. Since the HN is deployed in the cloud for personalized user needs, it is not impacted by
resource-constrained environments.

(ii)Communication Expenses. Communication is limited to local model parameters, not the larger
HN itself, allowing for complex server-side models without additional overhead compared to
FedAvg for federated parameter aggregation.

6.2 Limitation
(i)Malicious User Influence. Malicious users can modify data features or inject incorrect data
subsets into the original dataset to embed backdoors into the model, thereby manipulating
the training objectives of the local client [48]. Our proposed approach FHR-DQP introduces
an HN so that destroying a service user’s QoS prediction model does not leak information
about other service users, because the server-side HN generates a single embedding for each
user that remains on the server and cannot be interpreted. However, it still retains the noisy
gradient introduced by the service user during the stage of federated parameter aggregation,
which possibly reduces the model’s QoS prediction accuracy.

(ii)Computational Cost on the Server . HN updates introduce additional computational consump-
tions on the server, increasing the overall computational complexity and resource require-
ments.

6.3 Future Work
To address these limitations and enhance FHR-DQP, several promising research directions are
outlined.

(i)Reputation Mechanism. Reputation mechanism identifying untrusted users in mobile edge
computing is based on the Byzantine Fault Tolerance mechanism, which can be recognized
by the training gradient of surrounding users in a similar network environment.

(ii)Reduce the Size of the Embedding Layer . To mitigate privacy leakage, the fewer number of
neurons in the residual network are shared between the server and each service user, which
has a smaller impact on the accuracy of the centralized model, but it inevitably leads to a
decrease in the accuracy of a single QoS prediction model.

(iii) Improving Server Efficiency . Server load balancing strategies, distributed processing techniques,
or more efficient federated learning algorithms can be investigated and designed to optimize
the computational burden on servers.

7 Conclusion
In this article, we propose a novel DQP framework called FHR-DQP, which integrates shared
feature extraction with residual learning and personalized network generation via an HN. First,
the server performs one round of parameter aggregation of shared feature extraction residual
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layer, which is uploaded by the client that has been trained using private data locally. Then, the
client uploads locally trained personalized feature representations and gradients of personalized
prediction networks to the server, and the server leverages the HN to generate personalized network
parameters for different clients. Finally, predicting an unknown QoS for a distributed target user is
attainable through the trained personalized QoS prediction model until global convergence.
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