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GACL: Graph Attention Collaborative Learning for
Temporal QoS Prediction
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Abstract—Accurate prediction of temporal QoS is crucial for
maintaining service reliability and enhancing user satisfaction in
dynamic service-oriented environments. However, current meth-
ods often neglect high-order latent collaborative relationships and
fail to dynamically adjust feature learning for specific user-service
invocations, which are critical for precise feature extraction
within each time slice. Moreover, the prevalent use of RNNs for
modeling temporal feature evolution patterns is constrained by
their inherent difficulty in managing long-range dependencies,
thereby limiting the detection of long-term QoS trends across
multiple time slices. These shortcomings dramatically degrade
the performance of temporal QoS prediction. To address the
two issues, we propose a novel Graph Attention Collaborative
Learning (GACL) framework for temporal QoS prediction.
Building on a dynamic user-service invocation graph to compre-
hensively model historical interactions, it designs a target-prompt
graph attention network to extract deep latent features of users
and services at each time slice, considering implicit target-
neighboring collaborative relationships and historical QoS values.
Additionally, a multi-layer Transformer encoder is introduced to
uncover temporal feature evolution patterns, enhancing temporal
QoS prediction. Extensive experiments on the WS-DREAM
dataset demonstrate that GACL significantly outperforms
state-of-the-art methods for temporal QoS prediction across
multiple evaluation metrics, achieving the improvements of up
to 38.80%.

Index Terms—Web service, temporal QoS prediction, dynamic
user-service invocation graph, target-prompt graph attention
network, user-service temporal feature evolution.

I. INTRODUCTION

N TODAY’s interconnected service-oriented architec-
ture, Quality of Service (QoS) metrics serve as critical
indicators for maintaining reliability and enhancing user
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satisfaction in Web services. QoS encompasses several
parameters, including response time, throughput, and avail-
ability, which directly influence overall user experience [1].
Faster response times enhance user satisfaction, while higher
throughput and availability ensure service continuity and
stability. With the global acceleration of digital transfor-
mation, enterprise and individual dependence on online
services has made high service quality essential [2], [3], [4],
making effective QoS prediction paramount for service
providers to remain competitive and deliver consistent user
experiences.

However, accurately predicting QoS metrics remains chal-
lenging due to the dynamic and complex nature of network
environments [5], [6]. Rapid changes in network traffic, server
load fluctuations, and evolving user behavior patterns signif-
icantly impact QoS, causing volatility and unpredictability.
Static prediction methods [2], [7], [8], which overlook tempo-
ral trends, fail to address these issues. Consequently, enhancing
model accuracy requires comprehensive understanding of
the temporal dynamics underlying these metrics. Temporal
QoS prediction addresses these challenges by incorporating a
temporal dimension that treats historical QoS data as a time-
dependent sequence, thereby capturing inherent patterns and
trends. Advances in machine learning and data mining have
enabled significant progress in developing these predictive
models.

Current research in temporal QoS prediction falls into four
main categories: collaborative filtering (CF) with temporal
factors [9], [10], [11], sequence prediction analysis [12], [13],
tensor decomposition [4], [14], and deep learning [5], [15].
Temporal CF selects similar neighbors using random walk
algorithms and vector comparisons to address data spar-
sity and improve prediction accuracy. Sequence prediction
approaches adopt the ARIMA model [12], [13] to enhance
prediction performance of missing temporal QoS. Tensor
decomposition converts the traditional two-dimensional user-
service matrix into a three-dimensional tensor, employing
techniques such as CP decomposition [14], personalized gated
recurrent units (PGRU), and generalized tensor factorization
(GTF) [16]. Deep learning models leverage recurrent neural
networks (RNNs) and their variants like LSTM and GRU
to forecast unknown QoS using historical invocation data
and multidimensional context. These approaches integrate
temporal information to detect dynamic patterns in QoS
data, effectively addressing network volatility and enhancing
prediction precision.
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Despite these advancements, two critical limitations
persist in temporal QoS prediction. First, although recent
approaches [17], [18], including our previous work [19],
have integrated neural graph learning to incorporate indirect
user-service invocation relationships, they employ uniform
neighbor aggregation strategies that fail to differentiate the
importance of neighbors based on their relevance to the target
user-service pair. This one-size-fits-all approach neglects the
varying influence of neighboring users or services in real-
world scenarios, which depends on factors such as invocation
frequency, service requirement similarity, and QoS experi-
ence consistency. Consequently, these models cannot generate
precise, context-aware feature representations that adapt to the
specific nuances of individual QoS invocations that comprise
the recorded measurements of service quality when a particular
user accesses a specific service at a given time in diverse
and dynamic service environments. Second, current models
predominantly rely on RNNs to capture QoS evolution across
time slices, but RNNs struggle with long-range dependen-
cies [19], [20], limiting their capacity to fully utilize historical
data and detect long-term QoS trends. This constraint results in
less stable predictive performance, particularly when dealing
with services exhibiting complex temporal patterns or when
predicting QoS over extended time horizons.

To address these limitations and extend our previous
work, Dynamic Graph Neural Collaborative Learning
(DGNCL) [19], we propose a novel framework: Graph
Attention Collaborative Learning (GACL) for temporal QoS
prediction. First, we model historical user-service QoS invoca-
tions, which refer to historical interactions where users request
and receive quality metrics from Web services, as a temporal
service ecosystem and transform it into a dynamic user-service
invocation graph spanning multiple consecutive time slices,
enabling comprehensive modeling of temporal evolution in
user-service interactions. Second, we design a target-prompt
graph attention network for fine-grained, invocation-specific
feature extraction of each distinct user-service pair. This
network dynamically adapts to specific invocation scenarios
by employing a novel target-prompt attention strategy that
simultaneously leverages indirect invocation relationships and
implicit collaborative correlations between targets and their
neighbors. By recognizing varying neighbor relevance and
adaptively adjusting attention weights during aggregation, our
model precisely captures the unique characteristics of each
user-service pair (e.g., user preferences, service performance
patterns, and their interaction history) for every prediction
task. Finally, to capture long-term temporal dependencies, we
implement a multi-layer Transformer [21] encoder that effec-
tively models the temporal evolution of dynamically learned
user and service features across extended time horizons,
resulting in highly accurate temporal QoS forecasts.

The main contributions of this paper are:

e We propose GACL for temporal QoS prediction with
two key innovations: target-prompt graph attention for
context-aware feature extraction and a Transformer
encoder for modeling long-term dependencies, together
overcoming data sparsity challenges in complex temporal
service ecosystems.
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¢ We introduce a target-prompt attention mechanism that
adapts to each specific invocation by weighing neigh-
bor importance based on collaborative relationships and
historical QoS patterns, enhancing feature extraction in
sparse service environments.

o Experiments on the WS-DREAM dataset demonstrate
GACL outperforms ten baseline methods with up to
38.80% accuracy improvement across multiple metrics.

II. PROBLEM DEFINITION

Definition 1 (Temporal Service Ecosystem): A temporal
service ecosystem can be defined as a four-tuple & =
(U,S,7T,I), where U = {u;}}_, represents a set of n
users, S = {sj};-nzl denotes a set of m Web services, and
T = {t1,t2,...} is a set of continuous time slices. The set
7T = {7575} comprises user-service QoS invocations across
multiple temporal slices.

The temporal service ecosystem captures the dynamic inter-
actions between users and services, presenting them within
a temporal context to reflect interaction patterns and QoS
performance across different time slices. A specific user-
service QoS invocation in the ecosystem is defined as follows:

Definition 2 (User-Service QoS Invocation): Within a tem-
poral service ecosystem &, a user-service QoS invocation is
represented by a four-tuple 7 = (u, s, t,rl,), where u € U
denotes a user, s € S is a Web service, t € T represents a
time slice, and 7/ is the QoS value when u invokes s at 1.

Given a sequence of consecutive time slices and their cor-
responding user-service invocations, the problem of temporal
QoS prediction can be formally defined as follows:

Definition 3 (Temporal QoS Prediction): Given a temporal
service ecosystem ¢ and the associated historical QoS matrix
sequence R = {R' € Rnxm}\;\ , where R! is the historical
QoS matrix at time slice ¢ and r,,; denotes the QoS value for
a user u and a service s in R, the temporal QoS prediction
problem aims to learn interaction patterns between users and
services and their temporal evolution to accurately predict the
QoS for user-service invocations at subsequent time slices. It
can be formally defined as:

R+ :f(Rl,R2,...,R|T|\@f) 1)

where Rtt1 € R7X™ s the predicted QoS matrix for time
slice ¢ + 1, based on the historical QoS data R. The function
f (-|®f) represents the proposed prediction framework, with
Oy being the learned parameters.

This indicates that when a target user « € U invokes a target

service s € S at time slice ¢t + 1, the predicted QoS value is
,]qt-ﬁ-l c Rt-i—l
us *

III. APPROACH

Figure 1 illustrates the overall architecture of the GACL
framework, which operates in four key phases: First, it
transforms a temporal service ecosystem & with |7 time
slices into a discrete dynamic user-service invocation graph,
where each snapshot represents user-service invocations and
their corresponding QoS values for a specific time slice .
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a). Dynamic User-Service Invocation Graph Modeling
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b). Target-prompt User/Service Deep Feature Extraction
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Fig. 1. Overview of the GACL framework for temporal QoS prediction.

Second, for a target invocation 7, a target-prompt graph
attention network processes the invocation graph of each
time slice, extracting user and service features through biased
neighbor aggregation that simultaneously considers implicit
collaborative relationships and historical QoS values. Third,
user and service features from different time slices are fed
into a multi-layer Transformer encoder to capture temporal
evolution dynamics, generating temporal features for time slice
t + 1. Finally, two multi-layer perceptrons (MLPs) extract
latent temporal user-service invocation features and predict
QoS values.

A. Dynamic User-Service Invocation Graph Modeling

Discrete dynamic graphs can effectively model complex
interactions and temporal variations between enti-
ties [22], [23]. Therefore, we first model the temporal service
ecosystem & with |7| time slices as a dynamic user-service
invocation graph. Each snapshot of this dynamic graph
represents user-service invocations and the corresponding QoS
records for a specific time slice. In this dynamic graph, users
and services are represented as nodes. Any historical user-
service invocation is recorded as an edge between the target
user and service in the snapshot of the appropriate time slice,
with the QoS value as the edge weight. The formal definition
of this dynamic invocation graph is as follows:

Definition 4 (Dynamic User-Service Invocation Graph): A
dynamic user-service invocation graph is formulated as G =
{g? }\T\ For each snapshot G? Vu, Vs, EELWH), it is
a bipartite graph transformed from a sub temporal service
ecosystem ¢! = (U,S,t,I!) and the corresponding QoS

Temporal Feature

¢). Temporal Feature Evolution Pattern Mining

matrix R’ at time slice 7. Here, Vy, = {vy,}?_, is a set of n
user vertices; Vs = {vs; }72; is a set of m service vertices;
E' is a set of edges representing user-serv1ce invocation
relationships. If 7, ;. € R', there exists an edge ef; = ¢f; € €'
between Uy, € Vy and Us; € Vs; W is a set of edge weights.
If ef; € &, there exists a correspondmg weight wf; € W,
which can be derived from 7} . € R?.

To initialize the features of each node in G, we apply
a random embedding approach. Specifically, each node
v € V, UV is assigned a unique ID, which is then embedded
into a d.-dimensional latent space to generate its initial fea-
ture, denoted as e,. This embedding process can be formally
expressed as:

ey = Embedding(v) (2)

where Embedding(-) represents the embedding function that
maps the unique ID of node v to a d.-dimensional vector.
These embeddings serve as the initial features for the nodes
in the dynamic user-service invocation graph, capturing the
inherent characteristics of users and services based on their
unique identifiers.

Through these steps, we construct the dynamic user-service
invocation graph G, which will be used for subsequent target-
prompt deep feature learning for users and services.

B. Target-Prompt Deep Latent Feature Extraction of Users
and Services

Given the constructed dynamic user-service invocation
graph G and a target invocation (u, s, t + 1) whose QoS
requires prediction, we introduce a novel target-prompt graph
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Fig. 2. Message passing and aggregation in the target-prompt graph attention
network.

attention network to extract the deep latent features of the
target user u# and service s at each previous time slice.

Building on our prior work [19], we observe that a user’s
features are influenced by both direct service invocations
and indirect interactions with non-adjacent entities. Similarly,
a service’s features emerge from both direct user interac-
tions and collaborative relationships with other services. Such
complex relationships can be effectively captured through
neighbor information aggregation using the multi-layer recur-
sive message passing mechanism of Graph Neural Networks
(GNNs) [24] within the invocation graph G! for each time
slice r. We first detail the feature extraction process for
target users as depicted in Figure 2, noting that an identical
methodology applies to target services.

In our approach, neighbors contribute differentially to
feature extraction based on contextual relevancy, as users
and services with similar contexts typically indicate com-
parable physical network environments. We therefore adopt
the graph attention strategy from GAT [25], computing the
initial semantic aggregation attention between target nodes
and their neighbors based on contextual semantic relevancy.
Higher attention values indicate greater influence on feature
extraction. Specifically, for a target user u, N, 5 C V. denotes
the adjacent service vertices directly connected to u in G?
(i.e., u’s first-hop service neighbors at time slice ). For each
neighbor service s’ € Nl’i, the initial semantic aggregation
attention is calculated as:

t ! ! -1, -1\T
(attnm—s’) Usigmoid(Wattn<Xu + Xy ) > (3)

where 0igmoid(-) denotes the sigmoid activation function,

W', € R? represents learnable attention parameters for the

Ith message passing layer, xffl € R? is the hidden vector of
the target user output from the (I — 1)* layer, and d is the

. . . t 1
dimensionality of the latent features. The term (attn, , )" €

R represents the initial semantic attention value calculated at
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the [t layer. When [ = 1, this initial semantic attention is
derived from the embeddings of users and services:

-1
xv = €y,

ve{uUNﬁ} and [=1 4)

Drawing from collaborative filtering principles [2], [3], we
recognize that neighboring services closely related to a target
service contribute significantly to accurate QoS prediction.
Consequently, extracting features for the target user requires
prioritizing these similar neighboring services. Furthermore,
historical QoS values, represented as edge weights in the
invocation graph, directly reflect the actual network state and
physical environment context between users and services.
These values are crucial for accurately capturing interaction
dynamics and must be incorporated during feature aggrega-
tion. Existing methods rarely integrate these critical factors
simultaneously, resulting in suboptimal feature learning and
reduced prediction accuracy.

To address these limitations, we propose a novel target-
prompt attention strategy (illustrated in the bottom right of
Figure 2) that enhances target user feature extraction by
simultaneously accounting for implicit collaborative relevance
between neighboring and target services and corresponding
historical QoS records. We model this enhancement as an
affine transformation that adjusts the initial semantic attention
based on a prompt of the target service and historical QoS
data:

S [norm(xifl +xifl)||norm(qu,wis/ + bqlu)}

)

(aigs/)l = Gtanh (Wé (fci,‘l) Ty b,é) (6)
(BZH/)[ = Otanh (Wé (fci,‘l) L b};) (7

o l . l . l . l

(attnugsl) = (auesl) * (attnues/) + (/Buesl) (8)
where (ai%s,)l, ( ées,)l € (—1,1) represent learned scaling
and shifting factors for the initial semantic attention. o, (+)
is the hyperbolic tangent activation function, || denotes vector
concatenation, W), € R4, W, Wﬁl € R2%, and b}, b}, bé are
learnable parameters. The resulting adjusted attention value
(atAth% s/)l captures three key aspects: contextual semantic
relevance between the target user and neighboring services,
implicit collaborative relevance between the target service
and neighboring services, and the influence of historical QoS
values on neighbor feature contributions.

We then employ biased message propagation and aggrega-
tion based on these target-prompt attention values to enhance
feature extraction for the target user, as shown in the top right
corner of Figure 2. Specifically, the message (m! )l e R?

u<—s’
transferred from a neighboring service s’ € N} to user u is

formulated as:
- l
exp (attnm_s/>
Wl Xl—]. (9)

i msg™g!
ot
2ieN: 6IP<(atmu<—i) )

l
(mzu—s’) =
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Here, W,lnsg € R?*? represents a trainable weight matrix
for the [t layer. Messages from all adjacent services are
aggregated as:

() = oprene | B)TE 4 Y b )Y 0)

s'eNt

where (XZ)Z e RY represents the aggregated features of
u, incorporating first-order messages that capture behavioral
features from directly invoked services. The function o,
denotes the PReLLU [26] activation function.

By stacking I, message-passing layers, we extend the
aggregation to encompass messages from [,-hop user and
service neighbors, culminating in sophisticated invocation-
specific high-order latent features (XZ)ZQ for user u. This
advanced representation captures latent invocation correlations
between u and non-invoked services, as well as collaborative
relationships among structurally proximal user neighbors. The
process for extracting high-order latent features (xﬁ)lg for a
target service s mirrors that of user u, differing only in the
neighbor user message propagation and aggregation phase,
where the target prompt module modifies the initial semantic
attention based on implicit collaborative relevance between
neighboring users and the target user.

With a window size ws € NT, we extract deep latent
features for both target user and service from user-service
invocation graphs over the ws preceding time slices lead-
ing to the target time slice ¢ + 1. This yields sequence
features {(x%)l}I_, . 4 for users and {(x{)lo}i_,
for services. These sequences enable analysis of complex
nonlinear evolutionary patterns of the target user and service
over time, providing insights into their dynamic interactions
and potential future behaviors.

In this stage, our target-prompt mechanism integrates histor-
ical QoS values directly as edge weights in the graph, allowing
real network states to explicitly influence feature learning
within each time slice. This design ensures that extracted
features accurately reflect the actual service performance
conditions of their specific temporal context.

C. Temporal Feature Evolution Mining of Users and Services

Network state fluctuations and invocation behavior changes
manifest as complex nonlinear evolution patterns in user
and service features over time. To enhance temporal QoS
prediction accuracy, we harness the Transformer architec-
ture’s [21] capability to process long sequences, extract these
intricate evolution patterns, and generate temporal features that
encapsulate these patterns.

We first consolidate the user and service feature sequences
into respective feature matrices:

N
X, = stack {(x;)g} (11)
i=t—ws+1
NAK
X = stack {(xé) } (12)
1=t—ws+1

The self-attention mechanism alone cannot effectively dis-
tinguish temporal positions within these matrices, potentially
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compromising the chronological integrity of features across
time slices. Therefore, following standard Transformer design
principles, we incorporate positional encoding to explicitly
embed temporal information. For notational clarity, we abstract
both target user and service feature matrices as X, with the
encoding process defined as:

) pos
PEpos,% = Sm(lOOOO””) (13)

pOS
PEpOS,Qi—i—l = COS (1000022/d> (14)
X =X+ PE (15)

where PE € RWS*? represents the positional encoding
matrix, pos denotes the row index in the feature matrix, and i
indicates the column index within each row vector.

We then process X through a Transformer encoder with /;
layers and [, attention heads to extract temporal evolution
patterns and generate features for time slice ¢+ + 1. In
each encoder layer, multi-head attention captures temporal
dependencies across features from different time slices. For
the i-th layer, the computation proceeds as:

709 =X
7" = MultiHead(Zifl)

(16)

= Concat (headf, headgi, ceey headlid> Wiﬁd 17

Each attention head headf is computed as:

Q(x)

headji = softmax NG Vji (18)
Qi =71 (w?) (19)

. K\
sz =7 (I/V] ) (20)

. WY
vi=z(wY) @1

where WjQ, WjK , and WjV are learnable weight matrices in
the self-attention mechanism. Q;, Kji and Vji represent the
query, key, and value matrices, respectively. Higher attention
values in specific dimensions indicate greater contributions
from corresponding time slices toward generating ¢ + 1
temporal features. The scaling factor +/dj, normalizes dot
product results as prescribed in [21].

Following the multi-head attention, a feed-forward network
(FFN) [21] performs nonlinear transformation:

7 = FFN (Z”') - ReLU(Z” Wi+ b{') Wy + b5 (22)
Z' = LayerNorm (Zl + ZFl) (23)

where Wf, WQi, bf, and bg are trainable FFN parameters. After
processing through /i Transformer encoder layers, we extract
the temporal features for ¢ 4 1 as:

bt =z [ 1] (24)
l
Wit =z -1 (25)
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We select the final row of the hidden feature matrix Z l‘f,
which encapsulates information from all ws historical time
slices, as the temporal features of the target user and service,
hf["l e R? and hé"'l € R?, for subsequent QoS prediction.

Unlike graph attention networks that operate within individ-
ual time slices, our Transformer approach captures temporal
evolution across the entire window. Here, historical QoS
information is implicitly embedded in the user and service
features themselves, rather than explicitly as edge weights.
This complementary design enables our model to effectively
learn both spatial relationships and temporal dependencies of
QoS patterns.

D. Temporal QoS Prediction and Model Training

To effectively model the complex non-linear interaction
between users and services while maintaining model inter-
pretability, we employ a two-stage MLP design. This
hierarchical approach first learns an intermediate invocation
feature hg;;}l that captures the joint interaction patterns, before
using a second MLP to map this rich representation to QoS
values, enabling more precise feature fusion and improving
prediction accuracy. Based on the target-prompt temporal
features of hffl and hffl, we concatenate them and feed the
result into an MLP-based neural invocation layer to obtain the
invocation feature of u and s at ¢t + 1:

t+1 t+1 t+1
hutis— :hu+ ||hs+

t+1
hth = Uprelu(Winvhggl + binv)

(26)
27)

mu

where || denotes the concatenation operation, W;,,, € RE*x2d

and b;,, € R are the trainable parameters of the MLP.
Consequently, based on the evolutionary invocation feature
t+1 d - o N .

h: "' € R%, we predict the missing QoS #:f* at ¢+ 1 using a

fully connected neural network. The output layer is calculated

as follows:

';’52_1 = Orelu ( I/I/v()}12§—~_1 + bo) (28)

muv
where W, € R? and b, € R are the trainable output
parameters, and 7.11 is the predicted QoS of the target
invocation (u, s, t + 1).
To train and optimize the model parameters, we use the
Mean Square Error (MSE) as the loss function, defined as:

Yuev Lses(Pidt —rid?
[U| < |S]

where U and S represent the user and service sets, respectively.

© denotes all the trainable parameters of our proposed model,

and A controls the L2 regularization strength to prevent

overfitting. We then use mini-batch AdamW [27] to update

and optimize the parameters.

)2
L= + 03

(29)

E. Time Complexity Analysis

We analyze the computational complexity of GACL for
predicting QoS of a specific user-service pair (u, s, t
+ 1) through its main processing stages. In the feature
learning stage, the target-prompt graph attention network
processes k neighbors on average for each node across [,
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TABLE I
THE STATISTICS OF WS-DREAM DATASET

Item Value

Name of Sub-Dataset Response Time (RT)
# of Users 142
# of Services 4,500
# of Service Invocations 27,392,643
Range of QoS 0-20s
Mean & Variance of QoS 3.246.1
# of Time Slices 64
Overall Sparsity 66.98%

Throughput (TP)

0-6727kbps
11.3£54.3

layers. The dominant operations include attention computation
(O(k - d)) and message transformation with matrix-vector
multiplications (O (k - d?)), yielding a theoretical complexity
of O(ws - 1ly -k - d?) across ws time slices. Through parallel
processing of independent time slices, this can be reduced to
O(ly - k - d?) in practice.

For temporal pattern mining, the Transformer encoder with
liy layers requires O(ly - ws® - d) operations due to the
self-attention mechanism’s quadratic dependency on sequence
length. The final QoS prediction through MLPs adds O(d?)
complexity. In real-world deployments where k is small (sparse
invocation networks), d is moderate (feature dimension), and
ws is limited (temporal window size), GACL achieves efficient
inference with O(ly-k-d?+ b - ws? - d) complexity, enabling
real-time QoS prediction while maintaining high accuracy.

IV. EXPERIMENTS
A. Experimental Setup and Dataset

Our experimental framework was validated on a workstation
equipped with an NVIDIA GTX 4090 GPU, an Intel Xeon
Gold 6130 CPU, and 1 TB of RAM. The experimental
suite for GACL was developed using Python 3.9.6, PyTorch
2.0.1, and CUDA 12.0 to ensure compatibility and optimized
performance.

1) Dataset: To evaluate the effectiveness of GACL, we
conducted extensive experiments on the publicly available
WS-DREAM dataset [1], which is the most widely-adopted,
largest-scale real-world benchmark in the temporal QoS
prediction domain that has become the de facto standard for
research [4], [19], [20], [28], [29], including two types of QoS
criteria: response time (RT) and throughput (TP). It comprises
142 independent users, 4500 Web services, and a total of
27,392,643 user-service invocations for each QoS criterion,
partitioned into 64 temporal groups of historical QoS records.

The overall QoS sparsity, defined as the percentage
of observed historical QoS values in all possible user-
service-timeslice combinations, of the WS-DREAM dataset
is approximately 66.98%. To rigorously evaluate our model’s
robustness under different sparsity conditions reflective of real-
world scenarios, we conducted experiments at four distinct
density levels: 5%, 10%, 15%, and 20%. Table I summarizes
the detailed statistics.

2) Experimental Setup: We designed a sampling strategy
that involved a temporal window of ws 4 1 consecutive
time slices, where the first ws slices were used as historical
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TABLE 11
VARIOUS PARAMETER SETTINGS IN THE EXPERIMENTS

Parameter  Description Values

lg layers of target-prompt graph attention  [1,2,3]
network

d dimension of the temporal features of  [32,64,128,256,512]
users and services

p density of training dataset Dy, [5%,10%,15%,20%]

ey layers of transformer encoder [1,2,4,8]

lha head number of multi-head attention  [1,2,4,8]
mechenism

ws window size of historical QoS records  [1,4,8,16,32]

lr initial learning rate of AdamW opti-  0.001
mizer

bs batch size for training 64

ep maximum number of epochs 100

es early stopping patience 5

wd weight decay coefficient for L2 regu-  0.0001
larization

mlip1 structure of first MLP with ReLU ac-  [2d, d]
tivation

mlipa structure of second MLP for QoS pre-  [d, 1]

diction

observations and the last slice as the prediction target. For
each of these ws 4 1 time slices, we randomly sampled
subsets of user-service invocations at various densities. For
the first ws historical time slices, these sampled invocations
provided the observable historical QoS records used as input
features. For the last time slice (prediction target), the sampled
invocations were used as training labels in Dy, while the
remaining unsampled invocations within this same time slice
were allocated to the test set Dyeq as test labels.

Moreover, within the GACL framework, we meticulously
tuned various combinations of key parameters, which are
detailed in Table II. For model training, we employed the
AdamW optimizer with an initial learning rate of 0.001 and a
cosine annealing learning rate scheduler. The training process
used a batch size of 64 and continued for a maximum of
100 epochs with an early stopping mechanism that termi-
nated training if the validation loss did not improve for 5
consecutive epochs. To prevent overfitting, we applied L2
regularization with a weight decay coefficient of 0.0001. In
the QoS prediction component, the first MLP consisted of
a two-layer network with dimensions [2d, d] using ReLU
activation, while the second MLP employed a simpler two-
layer structure [d, 1] to map the invocation features directly to
QoS values. The optimal parameter combination was selected
for final experiments.

B. Competing Methods and Evaluation Metrics

1) Competing Methods: To evaluate the performance of our
proposed GACL for temporal QoS prediction, we compare it
with nine competing methods and our previous proposed one
DGNCL. They are described as below:

e UPCC [2]: A user-based method using Pearson
Correlation Coefficient to calculate user neighborhoods
and predict QoS through deviation migration.

e [PCC [3]: A service-based method that predicts QoS
using service neighborhoods and combines average QoS
with deviation migration.
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o WSPred [4]: It extends 2D matrix factorization to 3D
tensor representation for temporal QoS prediction.

o PNCEF [29]: It utilizes neural networks to learn non-linear
user-service relationships from sparse vectors.

e PLMF [15]: It encodes user-service-time relationships
using one-hot encoding and LSTM for temporal QoS
prediction.

e RTF [16]: It combines Personalized GRU and
Generalized Tensor Factorization to analyze long-term
and short-term dependency patterns.

o TUIPCC [11]: It integrates temporal values with
CF-based QoS values using a temporal similarity com-
putation mechanism.

o RNCEF [28]: It incorporates multi-layer GRU into neural
collaborative filtering to learn temporal features.

e GAFC [20]: It uses probabilistic matrix factorization,
gated feature extraction network, enhanced GRU, and
GAN for temporal QoS prediction.

o DGNCL [19]: It introduces a dynamic graph neural col-
laborative learning framework that integrates user-service
invocation graph modeling with graph convolutional
networks to capture high-order latent features, while
utilizing multi-layer GRU to extract temporal evolution
patterns for QoS prediction.

2) Evaluation Metrics: For our temporal QoS prediction
task, which is fundamentally a regression problem, we employ
three complementary evaluation metrics: Mean Absolute Error
(MAE), Normalized Mean Absolute Error (NMAE), and Root
Mean Squared Error (RMSE). These metrics, defined by
Equations (30)-(32), collectively quantify prediction accuracy
by measuring deviations between predicted and actual QoS
values, with smaller values indicating superior performance.

pHL _

MAE — Z(u,s) €D |Du|s S (30)
NMAE = ]V[AE—|Dt| (31)
T1

(u,s) €D Tus
2
Z . ,;,t-l—l _ 7ﬂt—}—l
RMSE = | =) € (i =) (32)

D

where 7131 and r/f! represent predicted and actual QoS
values respectively when user u invokes service s at time
t + 1, and D denotes the prediction sample set. While
MAE provides straightforward error magnitude assessment,
NMAE offers cross-dataset comparability through normaliza-
tion, and RMSE, with its squared term, emphasizes larger
errors and outliers—critical for evaluating robustness across
diverse prediction scenarios.

C. Competing Results and Analyses

Table III presents the comparative experimental results of
our proposed GACL framework and various baseline methods
on the RT and TP datasets under different data density settings
(5%, 10%, 15%, 20%). The best results are highlighted in
bold, while the second-best results are shaded in gray. As
shown in the table, our proposed GACL consistently achieves
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TABLE III
COMPARISON RESULTS OF VARIOUS COMPETING MODELS ON RT AND TP DATASETS UNDER DIFFERENT DATA DENSITY SETTINGS
Dataset Methods Density=5% Density=10% Density=15% Density=20%
MAE NMAE RMSE MAE NMAE RMSE MAE NMAE RMSE MAE NMAE RMSE
UPCC 0.9022 0.2819 1.9243 0.9587 0.2996 1.7961 0.8948 0.2796 1.7041 0.8513 0.2660 1.6284
IPCC 1.0657 0.3330 2.0001 0.8938 0.2793 1.7465 0.8432 0.2635 1.6807 0.8075 0.2523 1.6228
PNCF 1.1653 0.3642 1.8358 1.0891 0.3403 1.7221 1.0427 0.3258 1.6533 1.0129 0.3165 1.6170
WSPred 0.7809 0.2440 1.7065 0.6894 0.2154 1.6334 0.6726 0.2102 1.6076 0.6634 0.2073 1.5930
PLMF 0.7267 0.2271 1.7059 0.6786 0.2121 1.6126 0.6582 0.2057 1.5749 0.6444 0.2014 1.5523
RT RTF 0.6681 0.2088 1.7323 0.6302 0.1969 1.6661 0.6120 0.1912 1.6343 0.5352 0.1672 1.6361
TUIPCC 0.7314 0.2285 1.7760 0.6237 0.1949 1.6323 0.8193 0.2560 2.0587 0.6966 0.2176 1.6351
RNCF 0.6920 0.2162 1.7582 0.6007 0.1877 1.6685 0.5902 0.1844 1.6035 0.5559 0.1737 1.5935
GAFC 0.6318 0.1974 1.5555 0.6027 0.1883 1.6347 0.5511 0.1722 1.4230 0.4936 0.1542 1.5874
DGNCL 0.5743 0.1795 1.2841 0.5260 0.1643 1.1934 0.4891 0.1528 1.1580 0.4618 0.1443 1.1233
GACL 0.5126 0.1602 1.1291 0.4781 0.1328 1.0321 0.4439 0.1233 0.9907 0.4216 0.1171 0.9500
Gains 18.87% 18.84% 2741% 2041% 29.25% 36.00% 19.45% 28.40% 30.38% 14.59% 24.06%  38.80%
UPCC 4.0099 0.3549 21.9712  4.1034 0.3631 21.7595 4.1323 0.3657 21.5684 3.9765 0.3519 20.7731
IPCC 4.7661 0.4218 30.3209 4.4244 0.3915 23.2893 44221 0.3913 233136  4.0110 0.3550 20.8456
PNCF 4.7203 0.4177 24.1462  4.6581 0.4122 21.5097 4.5503 0.4027 20.4041 4.5633 0.4038 19.6659
WSPred 4.3792 0.3875 23.6124  4.1666 0.3687 22.3653 4.1252 0.3651 22.0316 4.0878 0.3618 22.1613
PLMF 4.3158 0.3819 25.6351  4.1234 0.3649 24.5232  4.0839 0.3614 23.8452  4.0320 0.3568 22.1021
P RTF 4.1393 0.3663 22.7817 4.0253 0.3562 20.8091 3.8740 0.3428 20.1664  3.7992 0.3362 19.8977
TUIPCC 4.0752 0.3606 22.5969  4.0366 0.3572 20.8590  3.8750 0.3429 20.1663  3.7076 0.3281 19.0516
RNCF 4.2877 0.3794 23.1256 = 3.8378 0.3396 20.8402  4.2737 0.3782 19.7895  3.6536 0.3233 19.3801
GAFC 4.0018 0.3541 21.9519 3.9006 0.3452 19.6847  3.7405 0.3310 19.2478 3.5385 0.3131 17.0031
DGNCL 3.9824 0.3524 19.6318 3.9471 0.3493 18.3619  3.7739 0.3339 18.0271  3.6357 0.3217 17.5440
GACL 3.6445 0.3225 14.1097  3.4006 0.3009 13.3413  2.8283 0.2503 12.4121 2.7658 0.2448 12.2824
Gains 8.93% 8.92% 3572%  11.39% 11.40% 32.23% 24.39% 2438% 3551% 21.84% 21.81% 27.76%

the best performance on both the RT and TP datasets. GAFC
frequently achieves the second-best results across multiple
metrics. Specifically, on the RT dataset, GACL achieved
improvements ranging from 14.59% (MAE improvement com-
pared to GAFC at a density of 20%) to 38.80% (RMSE
improvement compared to PLMF at a density of 20%) over the
best-performing baseline. On the TP dataset, GACL achieved
improvements ranging from 8.92% (NMAE improvement
compared to GAFC at a density of 5%) to 35.72% (RMSE
improvement compared to GAFC at a density of 5%).

Notably, GACL’s improvement in the RMSE metric is
generally more significant than in MAE and NMAE, indicating
better robustness against outliers compared to all baselines.
This significant performance enhancement can be attributed
to several key differences between GACL and GAFC. GAFC
employs an enhanced GRU (EGRU) and a generative adver-
sarial training mechanism for feature compensation, showing
strong performance through temporal pattern extraction and
feature enrichment via adversarial learning. However, while
GAFC focuses on compensating feature losses in sequential
modeling, GACL’s target-prompt GAT effectively considers
the complex implicit collaborative correlations and indirect
invocation relationships between targets and their neighbors
for every specific invocation. This allows GACL to extract
the invocation-specific features of target users and services
in each time slice and leverage the Transformer’s power-
ful sequence modeling capabilities to learn the temporal
evolution patterns of user and service features, achieving
more precise QoS prediction than GAFC’s EGRU-based
approach.

Regarding the performance changes under different data
density settings, we observe that the performance of GACL
consistently outperforms the baselines. This indicates that by

designing a target-prompt GAT and adopting multi-hop biased
message passing, GACL effectively aggregates information
from both directly and indirectly interacting neighbors to
enhance the feature representation of target users and services,
thereby alleviating the problem of accurately predicting QoS
in sparse scenarios. In contrast, while GAFC attempts to
address data sparsity through feature compensation, it lacks
the explicit modeling of collaborative relationships in the user-
service invocation graph that GACL employs. Additionally,
as data density increases, the performance of all models
improves; however, the gain in performance for GACL is
more significant compared to the baselines. This is reflected
in how GACL’s relative gains expand with increased data
density, demonstrating that GACL can more effectively extract
valuable information from increasing data to achieve accurate
temporal QoS prediction and integrate it into high-order
temporal latent features for users and services.

Moreover, as shown in the table, GACL achieves signif-
icant improvements in QoS prediction performance across
all experimental settings compared to our previous work,
DGNCL. It demonstrates that the target-prompt GAT in
GACL effectively identifies similar neighboring users and
services under the guidance of target prompts. By simul-
taneously integrating historical QoS records, it facilitates
high-quality deep feature extraction for users and services.
Additionally, GACL enhances temporal feature extraction by
replacing DGNCL’s GRU with a Transformer encoder. The
Transformer’s self-attention mechanism enables comprehen-
sive information aggregation across all time steps, addressing
GRU’s limitations in processing long-range dependencies. This
architectural advancement allows GACL to more effectively
capture global patterns and multi-scale temporal dynamics in
QoS data.
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TABLE IV
INFERENCE LATENCY COMPARISON FOR DIFFERENT METHODS ON
USER-SERVICE INVOCATION PREDICTION

Method Category Inference Latency (ms)
UPCC CF-based 3.2
IPCC CF-based 3.5
WSPred MEF-based 5.8
PNCF NN-based 8.4
RTF RNN-based 15.3
TUIPCC CF-based 7.6
RNCF RNN-based 14.1
GAFC GAN+RNN-based 20.5
DGNCL GNN+RNN-based 21.8
GACL GNN-+Transformer-based 25.6

Overall, our proposed GACL achieves state-of-the-art
performance on both the RT and TP datasets. Its excellent
performance across different QoS density settings validates its
effectiveness in handling QoS sparsity and capturing temporal
features. The proposed target-prompt GAT and multi-layer
Transformer encoder show significant advantages in high-order
latent feature extraction and temporal evolution pattern mining
for every specific target invocation, providing the robustness
for precise temporal QoS prediction.

D. Computational Efficiency Analysis

Beyond prediction accuracy, computational efficiency con-
stitutes a critical criterion for real-world deployment of QoS
prediction methods. We conducted a comprehensive analy-
sis of inference latency across all competing methods for
predicting single user-service pair QoS values, with results
presented in Table IV.

As evidenced in Table IV, methods exhibit a clear
complexity-latency relationship. Traditional collaborative fil-
tering methods (UPCC, IPCC) demonstrate minimal latency
(3.2-3.5 ms) due to their computational simplicity. Matrix fac-
torization (WSPred) and neural network approaches (PNCF)
show moderate latency (5.8-8.4 ms). Temporal modeling
methods employing recurrent neural networks (RTF, RNCF)
incur increased latency (14.1-15.3 ms) attributable to their
sequential processing architecture. More sophisticated archi-
tectures incorporating multiple neural components exhibit
progressively higher latency: GAFC (GAN+RNN, 20.5 ms),
DGNCL (GNN+RNN, 21.8 ms), and our proposed GACL
(GNN+Transformer, 25.6 ms).

This latency analysis reveals a computational efficiency-
prediction accuracy trade-off inherent in QoS prediction
models. While GACL requires additional computational
resources, its 25.6 ms inference time remains well within
practical bounds for real-time applications, particularly con-
sidering typical service response times range from hundreds
of milliseconds to seconds. Furthermore, GACL’s signifi-
cant predictive improvements (14.59%-38.80% on RT dataset
and 8.92%-35.72% on TP dataset versus the best baseline)
justify this modest computational overhead. The target-
prompt attention mechanism coupled with Transformer-based
temporal modeling captures complex user-service interac-
tions and temporal dependencies that simpler models cannot
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effectively represent. For latency-critical applications, tech-
niques such as model quantization and hardware acceleration
present viable optimization pathways without compromising
prediction accuracy.

E. Ablation Study

To evaluate the efficacy of our target-prompt attention strat-
egy, we designed ablation experiments isolating its two key
components: implicit collaborative relationships and historical
QoS values. Experiments were conducted on RT and TP
datasets with performance measured by NMAE and RMSE
metrics. We designed three ablation variants:

e GACL-t: This variant excludes implicit collaborative
relationship modeling between target and neighboring
entities. Equation (5) becomes:

(33)

s’ w us

gL = norm(Wl who + b,lﬂ)

e GACL-w: This variant omits historical QoS values
while preserving implicit collaborative relationships.
Consequently, eq. (5) becomes:

fci/_l = norm (xi_l + xi/_l) (34)

e GACL-tw: This variant eliminates both components,

using only semantic relevance between target entities and
their direct neighbors:

~ ! t l

(attnm_s/) = (attnu(_s/) (35)

Figure 3 shows that across all densities, the complete GACL
consistently achieves the lowest error metrics, while GACL-
tw exhibits the highest values, confirming the importance of
the target-prompt module. The GACL-w and GACL-t variants
demonstrate dataset-specific performance patterns: on RT data,
GACL-w generally outperforms GACL-t, while on TP data,
both variants show comparable performance.

This discrepancy is likely related to the different histor-
ical QoS distributions of the two datasets. The QoS value
range of RT is much smaller compared to TP, with fewer
outliers. For a specific user-service invocation, its QoS value
and implicit relationship with the network context of target
users and services can be more effectively mined by deep
models. Therefore, in the target-prompt module, considering
only the implicit correlation between target users/services
and neighbors can achieve good QoS prediction accuracy.
Conversely, for the TP dataset with a wider distribution range
and more outliers, a specific user-service invocation’s QoS
value does not always consistently correlate implicitly with
the network context of target users/services. Thus, it requires
additional consideration of the impact of historical QoS values.
As a result, both GACL-t and GACL-w experience significant
performance losses compared to GACL.

In summary, the ablation studies demonstrate the effec-
tiveness of the target-prompt attention strategy. Learning
context-aware features of users and services for each distinct
invocation by simultaneously considering implicit collabo-
rative relationships, and historical QoS values significantly
enhances the model’s predictive accuracy and robustness.
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Fig. 4. Parameter impact of layers of target-prompt graph attention network lg and dimension of user/service feature d.

The superior performance of the original GACL across all
metrics and datasets highlights the value of integrating these
components in temporal QoS prediction.

F. Performance Impact of Parameters

We investigate five key hyperparameters that impact our
model’s performance: layers of target-prompt graph attention
network (lg), dimension of user/service features (d), window
size (ws), transformer encoder layers (), and multi-head
attention heads (lj,4). Through extensive experiments on RT
and TP datasets across different density settings, we analyze
how each parameter affects the model’s feature learning and
prediction capabilities.

1) Impact of Target-Prompt GAT Layers (l;): The target-
prompt graph attention network layers (ly) directly influence
the neighborhood scope considered during feature extraction,
making it essential to validate its robustness across different
data densities. We systematically evaluated the impact of
varying l; from 1 to 4 across all density settings (5%-20%)
on both RT and TP datasets, as illustrated in Figure 4a-4d.
This comprehensive evaluation enables us to assess whether
the model maintains stable prediction accuracy regardless of
application scenario variations, thus confirming the model’s
practical robustness.

Experimental results demonstrate GACL consistently
achieves optimal performance at l; = 2 or l; = 3 across all
densities,with minimal performance fluctuations between these

values. This stability stems from the target-prompt attention
mechanism’s adaptive calibration of neighborhood information
based on contextual relevance. At lg = 1, performance
degrades significantly due to insufficient capture of indi-
rect relationships through intermediate nodes. Conversely, at
ly = 4, over-smoothing occurs as excessive message pass-
ing dilutes node-specific features and introduces noise from
irrelevant distant neighbors. For practical deployments, we
recommend [, = 2 for resource-constrained environments
and [, = 3 when prioritizing prediction accuracy. This
parameter’s robustness across density settings significantly
simplifies model deployment in diverse service environments
while maintaining high prediction performance.

2) Impact of Feature Dimension (d): Feature dimension (d)
significantly impacts representation capacity in deep learning
models. To thoroughly evaluate dimension robustness, we
conducted extensive experiments across all density settings
(5%-20%) on both RT and TP datasets, systematically varying
d from 32 to 512, as shown in Figure 4e-4h. This com-
prehensive analysis reveals how feature dimension affects
model stability and prediction accuracy in diverse application
scenarios, a critical factor for practical deployment.

GACL maintains stable performance within the dimen-
sion range of 128-256 across all density settings. This
dimensional robustness stems from the synergistic interaction
between the target-prompt attention mechanism, which cal-
ibrates feature importance based on prediction context, and
the Transformer’s multi-head attention, which captures diverse
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(a) NMAE of various ws & Iy &
lhd on RT

(b) RMSE of various ws & Iy &
lhd on RT

Fig. 5.

temporal patterns in parallel. At lower dimensions (32-64),
performance degrades significantly due to insufficient repre-
sentational capacity, particularly in higher density settings.
Conversely, large dimensions (>256) introduce excessive
parameters without proportional accuracy gains, increasing
computational overhead while yielding minimal improvement.
We recommend d = 128 for resource-constrained environ-
ments and d = 256 when maximum prediction precision
is required. This dimensional stability facilitates deployment
across diverse computational environments without sacrificing
prediction accuracy.

3) Impact of Window Size and Transformer Parameters (ws,
lif, lpq): Figure 5a-5d illustrates the interdependence between
window size (ws), transformer encoder layers (l;), and
attention heads (l},4). Following established convention [21],
we maintain [y = liy to ensure balanced representational
capacity.

We observe that performance improves with increasing
ws and [ (and consequently [,q). Importantly, the optimal
configuration depends on their interaction: smaller ws values
work best with fewer transformer layers and attention heads,
while larger ws values require more layers and heads. This
pattern emerges because smaller temporal windows focus on
short-term dependencies that can be modeled with simpler
architectures, while larger windows capture long-term patterns
requiring more complex models. The increased attention heads
enable parallel processing of different temporal aspects, while
deeper transformer layers facilitate more sophisticated feature
transformations.

Notably, while the leading baselines GAFC and our
previous DGNCL model (both utilizing GRU-based temporal
modeling) exhibit performance degradation beyond specific
window thresholds (ws > 10 for GAFC [20]; ws > 25
for DGNCL [19]), our Transformer-based GACL maintains
robust performance with window sizes up to 32. This superior
capability derives from several architectural advantages: (1)
the self-attention mechanism directly models dependencies
between arbitrary time points regardless of temporal dis-
tance, circumventing the sequential compression limitations
of RNNs; (2) parallel processing enables simultaneous con-
sideration of all historical time slices; and (3) multi-head
attention concurrently captures diverse aspects of temporal
patterns, effectively modeling the multi-dimensional nature of
QoS variations.

(c) NMAE of various ws & l;y &
lhd on TP

(d) RMSE of various ws & l;p &
lhd on TP

Parameter impact of window size ws, transformer encoder layers /¢, and attention heads .

Based on comprehensive parameter analysis, we selected
the configuration ws = 32, [y = lp,q = 8 for optimal balance
between prediction accuracy and computational efficiency.

V. DISCUSSION
A. Prediction Accuracy and Practical Utility

Beyond GACL’s consistent performance advantage over
existing approaches, an assessment of its absolute prediction
errors confirms practical utility in real-world QoS prediction
contexts. The RT dataset results (density = 20%) reveal
an RMSE of 0.9500 seconds—representing merely 4.75%
of the value range (0-20 seconds) and substantially lower
than the standard deviation (6.1 seconds). Similarly, with
the TP dataset, the RMSE of 12.2824 kbps constitutes only
0.18% of the throughput range (0-6727 kbps), well below
the standard deviation (54.3 kbps). These metrics demonstrate
GACL’s significant potential for deployment in operational
service environments.

In service-oriented computing, the critical applications of
QoS prediction—service selection and recommendation—
primarily require accurate service ranking rather than precise
value estimation [30]. GACL’s achieved accuracy levels pre-
serve the correct ranking order, enabling optimal service
selection decisions. This capability proves particularly valu-
able in large-scale ecosystems where users must differentiate
among functionally equivalent services based solely on QoS
properties. The prediction errors attained by GACL match or
exceed the benchmarks established in prior research, validating
its effectiveness for practical service selection applications.

B. Generalizability Analysis

Although initially developed for QoS prediction on the
WS-DREAM dataset, GACL’s Target-prompt graph attention
mechanism addresses fundamental challenges transcending
specific datasets through its core principle—calculating atten-
tion weights by integrating implicit collaborative relationships
with historical QoS values. Ablation studies confirm these
components’ effectiveness in extracting meaningful patterns
from user-service interaction data. The underlying methodol-
ogy extends to any domain where entity interactions exhibit
temporal evolution patterns within graph structures. GACL’s
key strength lies in its adaptive capability to automat-
ically calibrate the relative importance of structural and
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temporal information based on contextual factors and data
characteristics.

This generalizability stems from three critical architectural
decisions: (1) The Target-prompt mechanism offers a gener-
alizable approach to context-aware graph learning, addressing
the universal challenge of balancing diverse information
sources in graph-based prediction tasks; (2) The Transformer-
based temporal feature extraction module captures complex
non-linear dependencies without domain-specific assumptions;
and (3) The hierarchical representation learning framework
accommodates varying interaction complexities. These design
elements extend GACL’s applicability beyond QoS prediction
to recommendation systems, traffic flow prediction, and social
network analysis—domains where entity relationships form
graph structures and temporal dynamics influence predictions.

C. Robustness Analysis

The WS-DREAM dataset, despite being singular, provides
substantial advantages for robustness assessment. Unlike syn-
thetic alternatives, it features heterogeneous QoS distributions
with distinct statistical properties between RT and TP metrics,
significant regional variations across its global scope (57 ser-
vice regions, 22 user countries), and temporal fluctuations
throughout 64 time slices. These inherent characteristics create
a comprehensive testbed for model robustness by simulating
the distribution shifts encountered in operational environments.
The geographical diversity particularly challenges model sta-
bility, as QoS values between distant users and services exhibit
fundamentally different network characteristics compared to
proximate ones, necessitating adaptive feature extraction.

From a theoretical perspective, GACL exhibits exceptional
robustness against distribution variations through its archi-
tectural principles. The target-prompt attention mechanism
employs affine transformation, enabling dynamic calibration
of neighborhood information contribution without assuming
specific distribution patterns. This self-adjusting property facil-
itates adaptation to diverse QoS distribution characteristics
without parameter modifications. Empirical evaluations across
varying data density settings (5%-20%) confirm stability under
different sparsity conditions, with consistent performance
advantages over baselines. This stability derives from adap-
tive normalization and calibrated attention mechanisms that
prevent overreliance on either collaborative or historical
information sources.

VI. RELATED WORK
A. Static QoS Prediction

Static QoS prediction approaches can be classified into three
categories: memory-based, model-based, and deep learning-
based. These methods typically operate on a two-dimensional
matrix representing user-service QoS invocations.

Memory-based methods primarily utilize traditional col-
laborative filtering (CF) techniques to predict missing QoS
values. These approaches can be further divided into user-
based [2], service-based [3], and hybrid methods that combine
both user-based and service-based predictions using weighted
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coefficients. The fundamental principle of memory-based QoS
prediction is to identify a set of similar users or services
(neighborhood) through similarity calculations and then use
this neighborhood to compute deviation migrations. These
migrations are combined with average QoS values to predict
the missing QoS. Wu et al. [7] introduced a rate-based simi-
larity (RBS) method to select user and service neighborhoods,
achieving better QoS predictions. Zou et al. [8] proposed
a reinforced CF approach that combines RBS and Pearson
Correlation Coefficient (PCC) to accurately calculate average
QoS values and deviation migrations.

Model-based approaches aim to extract implicit linear or
nonlinear invocation relationships to enhance QoS prediction
performance, partially addressing the limitations of CF-
based methods. Xu et al. [31] proposed two context-aware
matrix factorization models that improve QoS prediction
by considering user and service contexts. Wu et al. [32]
introduced a general context-sensitive matrix factorization
approach to model interactions between users and services
more effectively.

Deep learning techniques have recently been employed
to solve QoS prediction problems due to their ability to
handle data sparsity and learn implicit nonlinear interactions.
These methods often combine neural networks with matrix
factorization and adopt multi-task learning to reduce prediction
errors and improve performance. For instance, Xu et al. [33]
developed the model that integrate deep learning with matrix
factorization to enhance prediction accuracy. Li et al. [18]
proposed the topology-aware neural (TAN) model, which
considers the underlying network topology and complex inter-
actions between autonomous systems to improve collaborative
QoS prediction. Zou et al. [34] designed a location-aware
two-tower deep residual network combined with collaborative
filtering, achieving superior QoS prediction. Recent advance-
ments have further improved QoS prediction performance by
incorporating expert systems and attention mechanisms [35],
or using GNNs [36], [37] to select, extract, and interact with
multiple features from user-service contextual information and
QoS invocations.

B. Temporal QoS Prediction

Temporal QoS prediction can be partitioned into four
categories: temporal factor integrated CF, sequence prediction,
tensor decomposition, and deep learning.

Temporal factor integrated CF methods incorporate tem-
poral information into the collaborative filtering process.
Hu et al. [9] integrated temporal factors with the CF approach
and used a random walk algorithm to select more similar
neighbors, alleviating data sparsity and improving temporal
QoS prediction. Tong et al. [11] improved temporal QoS
prediction by normalizing historical QoS values, calculating
similarity, and selecting neighbors based on the distance
of time slices, then using hybrid CF for prediction. These
approaches demonstrate the effectiveness of integrating tem-
poral information into QoS prediction and addressing the
limitations of non-temporal QoS prediction approaches.
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Sequence prediction methods use time series analysis tech-
niques to enhance temporal QoS prediction. Hu et al. [12]
combined CF with the ARIMA model and applied the Kalman
filtering algorithm to compensate for ARIMA’s shortcomings
in temporal QoS prediction. Ding et al. [13] integrated the
ARIMA model with memory-based CF to capture the temporal
characteristics of user similarity, improving the accuracy of
missing temporal QoS predictions. These approaches highlight
the benefits of combining sequence prediction analysis with
QoS prediction to capture temporal characteristics of QoS.

Tensor decomposition methods convert the classic
two-dimensional user-service matrix into a three-dimensional
tensor representation, enabling temporal factor incorporation.
Meng et al. [14] proposed a temporal hybrid collabo-
rative cloud service recommendation approach using CP
decomposition and a biases model to distinguish temporal
QoS metrics from stable ones. Zhang et al. [16] combined
Personalized Gated Recurrent Unit and Generalized Tensor
Factorization to leverage long-term dependency patterns for
comprehensive temporal QoS prediction. These methods
show the effectiveness of using tensor representations and
factorization techniques to incorporate temporal factors into
QoS prediction.

Deep learning models, such as RNN and its variants LSTM
and GRU, have been increasingly used for temporal QoS
prediction. Xiong et al. [15] proposed a personalized matrix
factorization approach based on LSTM to capture dynamic
representations for online QoS prediction. Zou et al. [5]
developed a temporal QoS prediction framework that combines
binary features with memory-based similarity and feeds them
to a GRU model to mine temporal aggregated features for
predicting unknown temporal QoS values. These deep learning
approaches effectively capture temporal dependencies and
patterns, enhancing the accuracy of temporal QoS prediction.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel framework for tem-
poral QoS prediction, named Graph Attention Collaborative
Learning (GACL). Specifically, we first leverage a dynamic
user-service invocation graph to model historical interactions.
Then, we design a target-prompt graph attention network to
extract invocation-specific deep latent features of users and
services. The target-prompt attention mechanism enhances
feature extraction by considering both implicit collabora-
tive relationships between neighbors and target users and
services, and historical QoS values of corresponding user-
service invocations. This dual consideration enables our model
to adaptively calibrate attention weights for each specific invo-
cation context, significantly improving feature representation
quality in sparse service environments. Finally, the multi-layer
Transformer encoder further uncovers feature temporal evolu-
tion patterns for users and services, providing a comprehensive
solution for accurate QoS prediction. Extensive experiments
on the WS-DREAM dataset demonstrate GACL’s superiority
over state-of-the-art methods, confirming the effectiveness of
our framework for accurate temporal QoS prediction.
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In the future, we plan to focus on enhancing the GACL
framework, which includes optimizing the architecture for var-
ious service ecosystems and integrating additional contextual
information. We also aim to explore the framework’s general-
izability to more complex and dynamic service environments
with heterogeneous QoS distributions and varying sparsity
patterns, ensuring its practical applicability across diverse real-
world deployment scenarios.
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