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Abstract—How to efficiently deploying the service components of
a data-intensive application on cloud and edge servers to minimize
its latency is one of the main challenges for service providers. Most
existing studies consider either service deployment or data place-
ment, rather than their joint optimization. This work considers the
driving relationship between data and services in a heterogeneous
environment including remote cloud and nearby edge servers, and
aims to obtain a desired data placement and service deployment
scheme while meeting user requirements for service quality. First,
we formulate the problem and decouple data placement from ser-
vice deployment by polynomial reduction. Then, a priority-based
data placement strategy is proposed, which can generate a data
placement scheme. After that, the original problem is transformed
into a classical assignment problem, and a service deployment
strategy based on an improved Hungarian algorithm is proposed to
obtain a service deployment scheme. Then, a dynamic adjustment
strategy based on response weight is proposed to dynamically
adjust the data placement and service deployment scheme in order
to reduce response latency, and obtain the final scheme. Finally, a
series of comparative experiments were conducted, pitting our al-
gorithms against several baseline and SOTA algorithms. The results
show that the proposed algorithms, in comparison to other algo-
rithms, is capable of generating superior data placement and ser-
vice deployment schemes to significantly reduce response latency.

Index Terms—Cloud computing, edge computing, data
placement, service deployment, Hungarian algorithm.

I. INTRODUCTION

S INCE the early 2000s, cloud computing has emerged as a
new frontier of software and application delivery, rapidly

moving beyond traditional inner systems to become reliable,
scalable, and cost-effective IT solution. However, with the in-
crease of IoT devices at the network edge, the scale of data
to be processed by data centers is increasing, which pushes
the network bandwidth requirements to the limit. Thus, edge
computing emerged by aiming to move computing from data

Received 18 July 2024; revised 10 May 2025; accepted 5 June 2025. Date
of publication 4 July 2025; date of current version 8 August 2025. This work
was partially supported in part by Ant Group through CCF-Ant Research Fund
and in part by the National Natural Science Foundation of China (NSFC) under
Grant 61602109. (Jingtan Jia and Chao Fang contributed equally to this work.)
(Corresponding author: Pengwei Wang.)

Pengwei Wang, Jingtan Jia, and Chao Fang are with the School of Computer
Science and Technology, Donghua University, Shanghai 201620, China (e-mail:
wangpengwei@dhu.edu.cn; xjtx0523@gmail.com; zihuanxue2@gmail.com).

Guobing Zou is with the School of Computer Engineering and Science,
Shanghai University, Shanghai 200444, China (e-mail: gbzou@shu.edu.cn).

Zhijun Ding is with the School of Computer Science and Technology, Tongji
University, Shanghai 201804, China (e-mail: dingzj@tongji.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSC.2025.3586092, provided by the authors.

Digital Object Identifier 10.1109/TSC.2025.3586092

centers to the edge of a network [1], utilizing smart objects,
mobile phones or network gateways to perform tasks and pro-
vide services on behalf of cloud. By moving services to the
edge, content caching, service delivery, service storage, and IoT
management can be provided, resulting in faster response and
data transfer. But distributing logic among different network
nodes brings new problems and challenges.

In addition to cloud computing and edge computing, a series
of applications supported by the Internet have also developed
by leaps and bounds. In order to be highly reliable and scalable,
modern application software adopts a service-oriented architec-
ture [2], [3]. As users have higher and higher requirements for
Quality-of-Service (QoS) of their applications, the functions of
service components that constitute applications become more
and more complex. Data storage and computing capabilities of
service components themselves are also increasing. Moreover,
there may be enforced associations and temporal sequences
among them [4]. In edge and cloud computing environments,
application providers can rent computing and storage resources
to deploy their applications, thereby providing highly-available
and low-latency services to their application users [5].

Existing studies related to service deployment often consider
a single aspect, but rarely consider data placement and service
deployment jointly. However, in the real world, there are many
types of applications, such as computing-intensive applications,
and data-intensive ones [6]. For the latter [7], most service
components are driven by data, which means that simply consid-
ering service deployment separately in heterogeneous networks
is not the best decision. In addition, the integration of cloud
and edge resources [8] can combine the powerful storage and
computing capability of cloud computing and the low latency
processing capability of edge computing. Their collaboration
enables them to adapt to broader application scenarios and exert
more powerful functions.

In this work, we study the problem of deploying data-intensive
applications in a cloud-edge collaborative environment in con-
junction with the driving relationship between data and services,
and combining data placement and service deployment, aiming
to reduce the response latency of application. We aim to make
the following new contributions to the field of cloud/edge com-
puting.
� We propose a priority-based data placement strategy

(PDPS) that optimizes data placement by considering the
demands of services for data and the proximity of edge
resources.

� By transforming the original problem into a classical as-
signment problem, we propose a service deployment strat-
egy based on an improved Hungarian algorithm (HA-SDS)
to obtain a service deployment scheme.
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� A dynamic adjustment strategy based on response weight
(RW-DAS) is introduced to dynamically adjust the data
placement and service deployment scheme jointly in order
to reduce response latency.

� By leveraging the driving relationship between data and
services, we jointly optimize data placement and service
deployment, effectively reducing the response latency of
data-intensive applications in cloud-edge collaborative en-
vironments.

Next section briefs the related work. Section III presents our
research motivation and the current challenges associated with
this problem. Section IV gives system models and problem for-
mulation. Then, our proposed algorithms are presented in Sec-
tion V. Their effectiveness are verified through extensive exper-
iments in Section VI. Finally, Section VII concludes this work.

II. RELATED WORK

Since most edge servers have limited resources, it is likely
to increase data processing latency, if reasonable data storage
is not provided. Therefore, Xia et al. [9] presented a Lyapunov
optimization-based method to solve the problem of collaborative
edge data caching. Xia et al. [10] proposed an approximation
algorithm, in order to solve the EDD problem. The studies con-
sider cloud data centers and edge environments jointly to solve
the related problems of data caching. A method is proposed to
cache data based on information entropy theory [11]. A balanced
placement algorithm is proposed based graph partition [12].
Multi-cloud storage is a framework for cloud storage. Wang
et al. [13] presented an architecture for multi-cloud storage in
order to reduce cost and improve availability. Similarly, Wang
et al. [14] proposed an adaptive architecture for multi-cloud
data placement, in order to solve the challenge of dynamically
storing users’ data according to time-varying access patterns.
Liu et al. [15] proposed a genetic algorithm-based method to
select cloud instances among multiple clouds. Cao et al. [16]
presented an algorithm based on NSGA-II and a multi-group
strategy, so as to help users select suitable services to store their
data in multi-cloud and edge environments. Wang et al. [17]
proposed a data temperature model to explore the spatial and
temporal attributes of data and their changing trend, and pre-
sented a data temperature-based multi-cloud storage strategy.
Cost and makespan are the most concerned issues for work-
flow scheduling [18], [19], [20]. Wang et al. [21] proposed an
immune-based PSO algorithm to implement makespan-driven
workflow scheduling among multiple clouds. Regarding the
challenge of multi-cloud placement of data copies, Chikhaoui
et al. [22] improved NSGA-II to lower execution time.

In an edge computing environment, service providers can
deploy their application instances on edge servers to provide
low latency service. Li et al. [23] explored an integrated manner
of optimizing both partitioning and replication without distin-
guishing replica’s roles. Then, they proposed LDP to conduct
the optimization of replica placement. In the highly distributed,
dynamic and volatile edge environment, the robustness of ser-
vices deployed on edge servers has been largely ignored. Chen
et al. [24] provided an integer programming-based approach
to solve it, and an approximate algorithm to efficiently find
near-optimal solutions for large-scale problems. To ensure the
system’s performance, there are at least two major challenges
to cope with: 1) how to offload the training jobs with multiple
data source nodes, and 2) how to allocate the limited resources
on each edge server among training jobs. Wang et al. [25]

Fig. 1. A typical example of data placement and service deployment of the
data-intensive application.

combined edge computing and deep learning, proposing an
efficient approximate algorithm based on reformulation and ran-
domized rounding technique. Wu et al. [26] proposed a general
parallel discovery strategy to improve the performance of par-
allelization for single-node algorithms. Xu et al. [27] and Lei et
al. [28] both considered Lyapunov optimization algorithm. The
former proposed OREO for mobile edge computing. The latter
transformed the long-term optimization problem into a series of
real-time optimization problems that only require of the current
time slot information. Considering user mobility and network
load balance, Wang et al. [29], [30] proposed a base station
selection algorithm based on user mobility prediction, which
included a user mobility prediction algorithm and a selection
strategy. Each microservice decoupled from the application can
be packaged into a docker image, and each microservice instance
is a docker container.

For data-intensive applications, data placement and service
deployment need to be jointly considered. Wang et al. [31]
analyzed the geographical characteristics of cloud centers with
the help of a clustering algorithm, and proposed a multi-cloud
data placement initialization strategy for spatial crowdsourc-
ing tasks. Wei and Wang [32] proposed a popularity-based
data placement method by mapping both data items and edge
servers to a virtual plane and performing data placement and
retrieval based on their virtual coordinates, aiming to mini-
mize data access latency and balance the load. Jin et al. [33]
optimized the distribution of data in edge storage systems by
combining erasure coding technology, while also considering
data access frequency and node load to ensure efficient data
access performance while reducing storage overhead. Bahreini
et al. [4] proposed a data-intensive service edge deployment
scheme based on genetic algorithm to minimize the response
time under storage constraints and load balancing conditions.
Chen et al. [7] solved a multi-component application placement
problem in edge computing environment by designing an effi-
cient heuristic online algorithm, and proposed a mixed integer
linear programming formulation. Hao et al. [34] achieved a
more efficient service placement strategy in complex industrial
CPS environments by combining deep reinforcement learning
techniques with traditional optimization methods. Fan et al. [35]
utilizes the Lagrangian relaxation method to optimize whether
each base station (BS) should deploy specific types of services,
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combined with resource allocation on edge and cloud servers.
Peng et al. [36] proposed a service deployment method based on
a submodular optimization algorithm, which iteratively adjusts
the placement of microservices and their request routing paths
to minimize resource consumption and latency.

However, the above-mentioned studies have not well consid-
ered the driving relationship between data and services. They
only considered the service deployment while ignoring the re-
lated data placement issue; or they focused solely on data place-
ment without considering the corresponding service deployment
needs. Such a one-sided approach may lead to suboptimal overall
performance. Therefore, this work focuses on data-intensive
applications that combine the driving relationship between data
and services in a cloud-edge environment so as to reduce the
response latency of application requests.

III. MOTIVATION

In the era of distributed cloud-edge computing, data place-
ment and service deployment have become cornerstones of effi-
cient application operation. Data placement involves determin-
ing where to store application data across cloud and edge servers,
while service deployment focuses on allocating computational
tasks to the most suitable nodes. These two processes are not
independent; instead, they are deeply interrelated and play a
critical role in ensuring low latency, optimal resource utilization,
and high-quality service delivery.

A microservices-based application consists of multiple mi-
croservices, each of which can be executed by several available
candidate edge servers. Taking an e-commerce application as an
example: when we shop on a client browser, we first search for
the desired products through various site search services; then
add the items to the shopping cart and proceed with payment,
which can be completed by calling services from Alipay, WeChat
Pay, or PayPal. Afterward, we can review and rate the pur-
chased items. In modern e-commerce platforms, personalized
recommendations, inventory management, and facial recogni-
tion payments are three core functional modules that rely on
efficient interaction between data and services to provide an
excellent user experience. Fig. 1 above illustrates the relation-
ships among services (s1, s2, s3), data blocks (d1, d2, d3, d4),
and edge servers (es1, es2, es3). The personalized recommenda-
tion service (s1) analyzes user behavior data (such as browsing
history and purchase records) to predict user preferences and
recommend products they might be interested in. In addition,
in order to achieve better recommendation results, the system
may require additional user contextual data or social data (d1).
Inventory management service (s2) is responsible for tracking
and updating the stock status of products. It handles transaction
history data (d2), which includes product details and sales in-
formation for each order. Effective inventory data management
enables timely stock replenishment, preventing out-of-stock
situations while also avoiding excessive inventory tying up
funds. For large-scale e-commerce platforms, inventory data is
typically distributed across multiple warehouses and geographic
locations. Facial recognition payment service (s3) involves face
database data (d3) and payment-related data (d4). Face database
data is used for user identification, whereas payment-related
data contains specific payment information. Given the sensitivity
of this data, it cannot be directly coupled with the services.
This architecture design not only enhances system flexibility
and scalability but also provides users with a more secure and
seamless shopping experience.

These services are highly interdependent and rely on data dis-
tributed across various locations. If data placement and service
deployment are not properly aligned, this can lead to latency in
recommendation generation or transaction processing, directly
impacting the overall user experience. Given the separation of
services and data, along with the frequent need for data access
by services, the joint optimization of data placement and service
deployment becomes extremely important. However, the above-
mentioned studies have not well considered and combined the
driving relationship between data and services for application
deployment, and optimize the service deployment and data
placement jointly.

Therefore, this work focuses on data-intensive applications
that combine the driving relationship between data and services
in a cloud-edge environment so as to reduce the response la-
tency of application requests. In the preliminary conference
version [37], we formulated the service deployment and data
placement problem and decoupled the original problem to obtain
separate solutions, but not the joint optimization of them. More-
over, in the process of decoupling, we simplified the original
problem and ignored some details, which leaves room for further
optimization of the results. Therefore, in this extended work,
we further propose a dynamic adjustment strategy based on
response weight to iteratively optimize the results of the previous
work, aiming to obtain a better solution.

IV. BASIC DEFINITIONS AND PROBLEM FORMULATION

A. System Model

1) Heterogeneous Network Model: A heterogeneous net-
work contains a remote cloud C and an edge cloud E =
{ek}Hk=1 (a set of H edge servers). It is represented as a
DAG graph G(V,E), where V = {v1, v2, . . . , vH+1}, and E =
{e1, e2, . . . , eg, eg+1, · · · eg+H}. Vertices v1 ∼ vH representH
edge servers and vertex vH+1 represents the remote cloud.
Edges e1 ∼ eg represent totally g edges among edge servers,
and eg+1 ∼ eg+H represent H edges between the remote cloud
and edge servers.

For each edge server ek, it has index k, storage capacity
ok, computing capacity pk (unit/ms), memory capacity mk

and geographic coordinates zk = (xk, yk). Similarly, for the
remote cloud C, it has storage capacity oC , computing capacity
pC (unit/ms), memory capacity mC , and geographic coordi-
nates zC = (xC, yC). Then, for any ek, we have the following
constraints: oC � ok, pC � pk, mC � mk

2) Application Model: An application A is composed of M
services that have different functions and uses N different data
blocks. Among them, each data block and service has an index.
The execution of each service should be in order, and may be
driven by some data blocks. We suppose that a data block can
only drive one service, but a service may be driven by several
(including zero) different data blocks. Therefore, we have A =
(D,S,R, F ), where the specific meanings of each component
are as follows.

1) D = {di}Ni=1 denotes a set of N different data blocks.
Each data block di has a quadruple (i, doi , d

s
i , d

e
i ), where i

is its index, doi is its size, dsi is the service which is driven
by di, and dei represents the edge server where di is placed.
Next, two binary variables rij and xik are introduced.

rij =

{
1, service sj is driven by data block di
0, other (1)
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xik =

{
1, data block di is placed on edge server ek
0, other

(2)

The symbol “| |” is defined to obtain the index. If dsi = sj
(if and only if rij = 1), then |dsi | = j. Similarly, if dei = ek
(if and only if xik = 1), then |dei | = k. To sum up, a data
placement scheme can be represented as anN ×H matrix
X = [xik]

i=N,k=H
i=1,k=1 , and each data block corresponds to a

row vector Xi = [xik]
k=H
k=1 (

∑H
k=1 xik = 1).

2) S = {sj}Mj=1 denotes a set of M services that have
different functions. Each service sj has a quintuple
(j, smj , spj , s

d
j , s

e
j), where j is the index, smj represents the

memory required by sj , spj (unit) represents the number
of instructions that sj contains, sdj represents the set of
data blocks that can drive sj , and sej is the edge server
where sj is deployed. Combining the binary variable rij ,
if sdj = {di|rij = 1}, then |sdj | = {i|rij = 1}. Another
binary variable yjk is introduced. If sej = ek (if and only
if yjk = 1), then |sej | = k.

yjk =

{
1, service sj is deployed on the server ek
0, other

(3)
The symbol “‖ ‖” is defined for counting. When ‖sdj‖ =
ε, it means that service sj is driven by ε data blocks,
and

∑N
i=1 rij = ε. To sum up, a service deployment

scheme can be represented as an M ×H matrix Y =

[yjk]
j=M,k=H
j=1,k=1 , and each service corresponds to a row

vector Yj = [yjk]
k=H
k=1 (

∑H
k=1 yjk = 1).

3) R = [rij ]
i=N,j=M
i=1,j=1 represents the driving relationship be-

tween data and service, which is an N ×M matrix. rij is
the same as that in (1). Each data block di corresponds
to a row vector Ri = [rij ]

M
j=1 (

∑M
j=1 rij = 1), which

represents the driving relationship between data block di
and all services. Similarly, each service sj corresponds to
a column vector Rj = [rij ]

N
i=1 (

∑N
i=1 rij = ‖sdj‖ ≥ 0),

which represents the driving relationship between service
sj and all data blocks.

4) F = {〈si, sj〉 | i, j ∈ [1,M ]} represents the execution
order between services. 〈si, sj〉 means that sj can be

executed after si has been finished. Symbol
−→
f is used

to record the execution order of all services (
−→
f0 is ‘null’).−→

fϕ = sj (j ∈ [1,M ], ϕ ∈ [1,M ]) means that sj is theϕth

service to be executed, and |−→fϕ| = j, |sj | = ϕ.
3) Response Latency: To simplify the model, the response

latency T of a data-intensive application in heterogeneous net-
work is defined as the period from the execution of its first service
to the completion of its last service. Regarding each service, it
contains three parts: request data, service execution, and output
result. The user’s location is not considered in this paper, and
thus we can ignore the transmission delay between a user and
application.

Assumption 1. (Service execution conditions): There are two
preconditions for service sj to be executed.
� The previous service sj′ =

−−−→
f|sj |−1 (|sj | > 1) has already

finished and transmitted the result to service sj (if |sj | = 1,
this constraint can be ignored).

� All of ‖sdj‖ data blocks in set sdj have been successfully
requested and obtained.

Assumption 2. (Data request mechanism): The data request
mechanism for service sj = (j, smj , spj , s

d
j , s

e
j) (‖sdj‖ = ε �

0) ∧ (sej = ek) is as follows:
1) When all the εdata blocks required by service sj are placed

on the same edge server ek, sj can be executed directly,
and the data transmission time can be ignored.

2) If a required data block di (rij = 1) is not placed on edge
server ek, we find the nearest edge server ek′ to check
whether this data block exists, and transmit it if so.

3) If the required data block is neither placed on the same
edge server ek nor on the nearest edge server ek′ , the
required data block is requested directly from remote
cloud C.

In summary, the response latency T can be defined as:
T = T req + T exec + T out (4)

T req is the sum of network latency for all services in the data
request phase, i.e.,

T req =
∑M

j=1
treqj (5)

treqj represents the network latency of sj requesting the
required data blocks, which includes propagation delay and
transmission delay, i.e.,

treqj =
∑

i∈|sdj |
(
tproij + ttransij

)
(6)

tproij represents the propagation delay between edge servers
sej and dei . Let λ denotes the propagation rate between
edge servers, and λC denotes the propagation rate between
edge server and remote cloud. Then, We use euclidean dis-
tance to represent the distance between two servers: l(§, †) =√
(§.lat− †.lat)2 + (§.long − †.long)2. We have:

tproij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

l(z|de
i
|,z|se

j
|)

λ
, service sj requests data di

from edge, and |dei | �= |sej |
0, service sj requests data di

from edge, and |dei | = |sej |
l(zC ,z|se

j
|)

λC , service sj requests data di
from the remote cloud

(7)

ttransij is the transmission delay between sej and dei . Let b
denotes the network bandwidth between edge servers, and bC

denotes the network bandwidth between edge server and remote
cloud. We have:

ttransij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

do
i

b , service sj requests data di from
edge servers, and |dei | �= |sej |

0, service sj requests data di from
edge servers, and |dei | = |sej |

do
i

bC
, service sj requests data di from

the remote cloud

(8)

T exec represents the sum of latency for all services in service
execution phase, i.e.,

T exec =
∑M

j=1
texecj (9)

texecj is the execution time of the service sj that is deployed
on edge server ek = sej (yjk = 1), i.e.,

texecj =
spj
p|sej |

(10)
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T out represents the sum of latency for all services in output
result phase, i.e.,

T out =
∑M−1

ϕ=1
toutjj′ (11)

toutjj′ represents the network latency of sj outputting and
transmitting its result, which includes propagation delay tprojj′

and transmission delay ttransjj′ , i.e.,

toutjj′ = tprojj′ + ttransjj′ (12)

where j = |−→fϕ|, and j ′ = |−−→fϕ+1| (ϕ ∈ [1,M − 1]). Let ujj′

represents the amount of resulting data that service sj outputs.

tprojj′ =

{
l(z|se

j
|,z|se

j′ |
)

λ
, |sej | �= |sej′ |

0, |sej | = |sej′ |
(13)

ttransjj′ =

{ujj′
b , |sej | �= |sej′ |

0, |sej | = |sej′ | (14)

Therefore, T can be re-expressed as:

T =
∑M

j=1
treqj +

∑M

j=1
texecj +

∑M−1

ϕ=1
toutjj′

=
∑M

j=1

∑
i∈|sdj |

(
tproij + ttransij

)
+
∑M

j=1

spj
p|sej |

+
∑M−1

ϕ=1

(
tprojj′ + ttransjj′

)
(15)

B. Problem Formulation

This work aims to find a satisfactory service deployment and
data placement scheme for data-intensive applications, so as to
minimize response latency. The problem to be solved can be
formulated as follows.

min T (16)

s.t.∑H

k=1
xik = 1, ∀i (17a)

∑H

k=1
yjk = 1, ∀j (17b)

(doi ≤ o|de
i |) ∧

(∑N

i=1
doi �

∑H

k=1
ok

)
, ∀i (17c)

(
smj ≤ m|sej |

)
∧
(∑M

j=1
smj �

∑H

k=1
mk

)
, ∀j (17d)

(
oC � ok

) ∧ (
pC � pk

) ∧ (
mC � mk

)
, ∀k (17e)

Constraints (17a) indicates that only one copy is placed on
edge servers for a data block, and (17b) indicates that only one
instance is deployed on edge servers for each service. (17c)
represents storage resource constraint, and (17d) represents
memory resource constraint. Constraint (17e) means that the
remote cloud has more powerful capabilities than edge servers.

V. PROBLEM SOLVING

Let P1, P2, and P3 denote the three parts of (15), i.e.,⎧⎪⎪⎨
⎪⎪⎩
P1 =

∑M
j=1

∑
i∈|sdj |(r

pro
ij + ttransij )

P2 =
∑M

j=1

spj
p|se

j
|

P3 =
∑M−1

ϕ=1 (t
pro
jj′ + ttransjj′ )

(18)

Then, the problem to be solved can be further expressed as:

A : min P1(X,Y ) + P2(Y ) + P3(Y )

s.t. (17a), (17b), (17c), (17d), (17e) (19)

This work aims to solve problem A such that the final data
placement scheme Xopt and service deployment scheme Y opt

can meet the requirement of low response latency. It’s important
to note that because data placement and service deployment are
NP-hard problems, which has been proved in [7], [38] [39], the
algorithms we proposed below to obtain data placement scheme
Xopt and service deployment scheme Y opt are heuristic.

A. Problem Decoupling

In order to decouple the above problem, we introduce two
functions P1

′ and P1
′′. Problem A can be reduced to the fol-

lowing problem B1 if we randomly generate a feasible service
deployment scheme Y viable. We prove that in Appendix.

B1 : min P1
′(X,Y viable)

s.t. (17a), (17b), (17c), (17d), (17e) (20)

Then, we can obtain a data placement schemeXsub by solving
problem B1. Finally, by substituting Xsub into the original
problem A, problem A can be transformed into problem B2.

B2 : min P1
′′(Xsub, Y ) + P2(Y ) + P3(Y )

s.t. (17a), (17b), (17c), (17d), (17e) (21)

B. Data Placement Problem

In this section, we focus on solving problemB1. First,Y viable

is generated. Then, we propose PDPS to obtain Xsub.
Let L = [lkk′ ]k=H,k′=H

k=1,k′=1 denote a H ×H distance matrix,
where lkk′ is the euclidean distance between edge servers ek
and ek′ . If k = k′, then lkk′ = ∞. Let LC = [lCk ]

k=H

k=1 denote the
distance matrix about remote cloud, where lCk is the euclidean
distance between edge server ek and remote cloud. Moreover, let
W = [w�k]

�=2,k=H
�=1,k=1 denote a 2×H residual capacity matrix.

Then, row vector W1 = [w1k]
k=H
k=1 represents the remaining

storage capacity of edge servers, andW2 = [w2k]
k=H
k=1 represents

the remaining memory capacity of edge servers.
Rule 1 (Placement): For a data block di, edge server ek satis-

fies the placement condition indicating that its remaining storage
capacity meets the demand of this data block, i.e., w1k � doi .

Rule 2 (Deployment): For service sj , edge server ek satisfies
the deployment condition indicating that its remaining memory
capacity meets the demand of this service, i.e., w2k � smj .

The main idea of PDPS algorithm is that each data block
is preferentially placed on edge server ek, where the service
driven by this data is deployed on. If ek does not satisfy the
placement condition, this data block is placed on ek′ which is
the closest to ek. If ek′ cannot satisfy the placement condition
either, this data block is placed on ek′′ from the remaining edge
servers, which has the smallest storage capacity satisfying the
placement condition. In addition, a full copy of all data blocks
D are also stored in the remote cloud. The pseudo-code and time
complexity analysis of PDPS algorithm is in Appendix.

C. Service Deployment Problem

In this section, we focus on solving problem B2. Assuming
that the data size is very small in the output result phase,
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then, the network latency P3 =
∑M−1

ϕ=1 (t
pro
jj′ + ttransjj′ ) among

services is essentially negligible, i.e., P3(Y ) = 0. Thus, B2 can
be transformed into C1:

C1 : min P1
′′(Xsub, Y ) + P2(Y )

s.t. (17a), (17b), (17c), (17d), (17e) (22)

ProblemC1 is a classical assignment problem [4], [40], which
can be solved by using the Hungarian algorithm [41]. The
original Hungarian algorithm requires that services and edge
server should have a strict one-to-one relationship. However,
the number of services and edge servers is not necessarily equal,
and multiple services may be deployed on the same edge server.
Therefore, we make modifications on the basis of the Hungarian
algorithm and propose HA-SDS to obtain Y sub.

Let Λ = [τjk]
j=M,k=H
j=1,k=1 denote an M ×H cost matrix, where

τjk = P1
′′(Xsub, Y ) + P2(Y ) is the latency cost when service

sj is deployed on edge server ek. If the deployment condition is
not satisfied, then τjk = ∞.

The main idea of HA-SDS are as follows. The numbers of
services and edge servers are compared first. When M = H ,
the original Hungarian algorithm is applied. When M < H , we
add H −M virtual services. The cost matrix is denoted as Λ′,
and the values of the last H −M rows are all set to 0. Then, the
standard Hungarian is applied to cost matrix Λ′. When M > H ,
the cost matrix Λ is divided into ξ (ξ = �M/H�) small H ×H
matrices according to the number of edge servers, denoted as
Λ1 ∼ Λξ. If the number of services in the last small matrix Λξ is
less than the number of edge servers, a corresponding number of
virtual services are added to it, and the related latency cost is set
to 0. Then, the standard Hungarian algorithm is applied to each
small matrix in order. The pseudo-code and time complexity
analysis of HA-SDS algorithm is in Appendix.

D. Joint Data Placement and Service Deployment

By PDPS and HA-SDS, we can obtain Xsub and Y sub.
However, in the process of problem decoupling, we use the
strategies of problem reduction and simplification. Moreover,
in the process of finding Y sub, although we consider the com-
munication latency between data blocks and services, as well
as the execution latency of services, we assume that the data
size is very small in the output result phase to neglect the
communication latency among services. Therefore, the obtained
Xsub and Y sub can be further optimized. Next, we propose RW-
DAS, so as to adjust Xsub and Y sub, and obtain the optimized
data placement scheme Xopt and optimized service deployment
scheme Y opt. This algorithm possesses the versatility to be
seamlessly integrated into various data placement and service
deployment algorithms, yielding superior data placement and
service deployment schemes.

Let Δ = [σj ]
M
j=1 denote the response weight matrix, where

σj = treqj + texecj + toutjj′ is the response weight of service sj .
For the same data placement scheme and service deployment
scheme, the service that has the largest response weight is called
a bottleneck service.

Rule 3 (Data location exchange): If there is (w1k + doi ≥ doi′)∧ (w1k′ + doi′ ≥ doi ), then data block di placed on edge server ek
and data block di′ placed on edge server ek′ satisfy the location
exchange condition.

Rule 4 (Service location exchange): If there is (w2k + smj ≥
smj′ ) ∧ (w2 k′ + smj′ ≥ smj ), then service sj deployed on edge
server ek and service sj′ deployed on edge server ek′ satisfy
the location exchange condition.

The main idea of RW-DAS is as follows:
� The bottleneck service sj, which is obtained based on
Xsub and Y sub, is redeployed on other edge servers that
satisfy Rule 2 or exchanged locations with other services
that satisfy Rule 4. If a lower response latency T can be
obtained, the location of this service is changed, and Y sub

is updated.
� Each bottleneck data di (rij = 1) which drives bottleneck

service sj is re-placed on other edge servers that satisfy
Rule 1 or exchanged locations with other data blocks
that satisfy Rule 3. Specifically, the replace and position
exchange ideas are similar to PDPS’s. If a lower response
latency T can be obtained, the location of this data block
is changed, and Xsub is updated.

� The above two steps are iterated until a lower response
latency cannot be obtained. Then output Xopt and Y opt.

The pseudo-code of RW-DAS is shown in Algorithm 1.
Line 1 initializes the distance matrices L and LC , the remain-

ing capability matrix W , the response latency T
sub, and the

response weight matrixΔ. Lines 2-3 initializeXopt, Y opt,Topt,
the iteration stop flag stop, and the number of iterations count.
Line 6 indicates that the bottleneck service and the bottleneck
data blocks of the current iteration are obtained. Lines 7-11
indicate that the bottleneck service can be redeployed on other
edge servers. Lines 12-16 indicate that the bottleneck service
can be exchanged with other services. Lines 18-30 indicate that
each bottleneck data block can be replaced on other edge servers
or exchanged with other data blocks. Lines 31-35 indicate that
if the current iteration yields a better result, then this result is
saved; otherwise, the iteration is terminated.

We can prove the convergence of RW-DAS algorithm based on
the monotonicity of the objective function and the finiteness of
the optimization space. During each iteration, RW-DAS ensures
that the response latency T decreases strictly monotonically by
redeploying bottleneck services or adjusting the locations of
bottleneck data, satisfying T

count+1 ≤ T
count. Additionally,

since the response latency T is non-negative and the search space
for data placement and service deployment is finite, the algo-
rithm is guaranteed to converge to a local optimal solution within
a finite number of iterations, satisfying T

count+1 = T
count.

Time Complexity Analysis: The RW-DAS algorithm, in each
iteration, identifies the bottleneck service and the data driving
this bottleneck service, and deploys/places them on new edge
servers provided that this action can reduce the response latency.
The most time-consuming step is to swap the location of the data
driving the service with the data on the target servers, which
include only the server hosting the service and the server closest
to the one hosting the service. Therefore, the time complexity
is O(C ·N2), where C is the number of iterations. However, in
practice, the actual time complexity is far less than O(C ·N2),
because the number of data driving a specific service is much
smaller than N , and the number of data placed on a single server
is also much smaller than N .

VI. EXPERIMENTS AND ANALYSIS

We implement the proposed PDPS, HA-SDS and RW-DAS
in a Python 3.7.12 environment. All the experiments are
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Algorithm 1: Dynamic Adjustment Strategy Based on Re-
sponse Weight.

performed on an AMD Ryzen 7 4800H with Radeon Graphics
2.90 GHz processor, 16.0 GB RAM and Windows 10 operating
system. Due to the lack of suitable edge server information
and benchmark data sets, we automatically generate different
datasets through program control by referring to [7], [42]. In
our experiments, the most important issue is the driving rela-
tionship between data and services, which has a great impact
on the results. Therefore, in our datasets, the indexes of data-
driven services are randomly generated, which ensures that some
services do not need to request data, and some services need to
request more than one data. See Table I for details on parameter
settings.

A. Baseline Algorithms

The proposed method (named as PDPS-HA-RW) consists of
three stages: 1) PDPS is used to get a data placement scheme.
2) HA-SDS is applied to obtain a service deployment scheme.
3) RW-DAS is used to adjust the above data placement scheme

Fig. 2. Comparison of latency with changing the number of data blocks.

and service deployment scheme, so as to obtain the final data
placement and service deployment scheme.

To evaluate the effectiveness of different strategies in our
proposed methodology, we implement three baseline strategies,
Random, SIZE, and FIFO. By combining different baseline
strategies and RW-DAS, five combination strategies, Random-
Random-RW, SIZE-SIZE-RW, SIZE-FIFO-RW, FIFO-FIFO-
RW, FIFO-SIZE-RW can be obtained.
� Random: It randomly selects the available edge servers for

data placement and service deployment.
� SIZE: The largest data block is preferentially placed on

the edge server with the smallest storage capacity which
can meet the placement condition. The service with largest
computing demand is preferentially deployed on the edge
server with the largest computing power, which can meet
the deployment condition.

� FIFO: According to the execution order of services, the
corresponding data blocks are placed on the edge server
with the smallest storage capacity that meets the placement
condition. According to the execution order of services,
the first service is preferentially deployed on the edge
server with the largest computing power that meets the
deployment condition.

Considering the randomness, all algorithms are executed five
times and the results are averaged. In addition, let γ denotes the
response latency reduction rate after applying the RW-DAS, i.e.,

γ =

(
T without RW − T

+ after using RW
T without RW

)
× 100% (23)

1) Change the Number of Data Blocks: Fix M = 100, H =
150, and change N . As shown in Fig. 2, our algorithm can
always get the lowest response latency and the fastest conver-
gence speed compared with other methods. In addition to our
algorithm, when N < 75, SIZE-FIFO-RW performs relatively
well. When N > 75, the advantages of Random-Random-RW
and FIFO-SIZE-RW begin to emerge slowly. This is because as
N increases, the driving relationship between data and services
becomes more and more complex, and service deployment using
SIZE performs better than using FIFO. When N is small, γ of
SIZE-FIFO-RW always remains at a high position. As the value
of N gradually increases, the γ of FIFO-SIZE-RW algorithm
begins to increase, almost approaching 30% at N = 100, and
the corresponding response time reaches the lowest among the
five baseline combination algorithms. This shows that part of
the credit for this excellent performance belongs to our RW
algorithm, and the FIFO-SIZE itself may not perform so well.
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TABLE I
PARAMETER VALUES

Fig. 3. Comparison of latency with changing the number of services.

In addition, when N = 75, the performance of the five baseline
combination algorithms is relatively flat, and the corresponding
γ has a sudden downward change, but all remain around 5%. The
reason is that the driving relationship between the data block and
the server is relatively balanced at this time, the storage resources
and computing resources in the entire heterogeneous network
are in a relatively reasonable resource competition state, and the
load balance of the system tends to be stable.

2) Change the Number of Services: FixN = 100,H = 150,
and change M . Combined with Fig. 3, our algorithm can always
get the lowest response latency compared with other algorithms,
and the convergence speed is always stable in a faster state.
Besides, when M ≤ 75, Random-Random-RW performs the
best among the five baseline combined algorithms. Random-
Random-RW always maintains the highest γ in the first half.
This shows that part of its good performance is due to our
RW algorithm, and its Random-Random algorithm itself may
not be good. In addition, the other four baseline combination
algorithms are always in a state of mutual game, untilM = 125,
they tend to be in equilibrium with each other. This is because
the number N of data blocks is always fixed at 100. When M =
25, 50, 75, and 100, the number of services is always less than
or equal to the number of data blocks. The driving relationship
has a great influence on the experimental results.

3) Change the Number of Edge Servers: FixN = 100,M =
100, and change H . Combined with Fig. 4, our algorithm can
always get the lowest response latency compared with other
algorithms, and the convergence speed is always stable in a faster

Fig. 4. Comparison of latency with changing the number of edge servers.

state. In addition, Random-Random-RW performs well on the
whole. The FIFO-FIFO-RW and FIFO-SIZE-RW have obvious
advantages in the early stage, and the later advantages are
gradually replaced by the SIZE-SIZE-RW and SIZE-FIFO-RW.
Especially when H = 175, the response latency of SIZE-FIFO-
RW is significantly lower than the response latency of the other
four baseline combination algorithms, and the corresponding γ
value exceeds 35%, which means that it achieves good result at
the same time. There is a considerable time cost, and part of this
advantage is obtained with the help of our RW algorithm. At the
same time, our algorithm also obtains the lowest response time,
but the time cost paid in the RW stage is almost zero.

4) Change Storage Capacity of Edge Servers: Fix the other
parameters, and change the storage capacity of edge servers to
[600,1100], [700,1200], [800,1300], [900,1400], [1000,1500],
so as to verify the impact of storage capacity on different
methods. Combining Fig. 5, our algorithm PB-HA-RW always
maintains the lowest response latency and has the fastest con-
vergence speed. Besides, Random-Random-RW performed the
best among the five baseline combined algorithms, but its γ was
consistently higher than 25%, and even exceeded 35% twice.
This means that although the algorithm obtains a lower response
latency, its convergence speed in the RW stage is slower, but if
the RW algorithm is removed, the effect of Random-Random
algorithm itself may not be so brilliant. In addition, SIZE-FIFO-
RW performs the worst among the five baseline combination
algorithms, while the corresponding FIFO-SIZE-RW algorithm
performs well. This is because the values of the three parameters
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Fig. 5. Comparison of latency with changing storage capacity of edge servers.

Fig. 6. Comparison of latency with changing memory capacity of edge servers.

N , M , and H are fixed at 100, 100, and 150 respectively. The
influence of the driving relationship between the data block and
the service is dominant in the whole experiment. Compared with
FIFO, SIZE is more suitable for the service deployment stage.
And FIFO is more suitable for the data placement stage.

5) Change Memory Capacity of Edge Servers: Fix the other
parameters, and change the memory capacity of edge servers.
Combining Fig. 6, our algorithm can always obtain the lowest
response latency and the fastest convergence in the RW stage.
Furthermore, Random-Random-RW performs the best among
the five baseline combined algorithms. However, its γ always
remains the highest, which indicates that the algorithm has the
slowest convergence speed and the longest time-consuming in
the RW stage. The overall performance of the other four baseline
combination algorithms is relatively stable. This is because as the
memory capacity of the server increases, a single edge server can
deploy multiple services at the same time, and the probability
of the service and the data driving it on the same edge server
increases, and the driving relationship has less influence on the
experimental results. Therefore, the difference between SIZE
and FIFO in the data placement stage and the service deployment
stage is not obvious. When the memory capacity of the server
is in the range of [500, 900], SIZE-SIZE-RW and SIZE-FIFO-
RW perform poorly. This is because our data set is randomly
generated through program control, and the driving relationship
in the corresponding data set at this stage is relatively tense, while
the overall memory capacity of the server is relatively small, and
the driving relationship still occupies a dominant position.

6) Change Computing Capacity of Edge Servers: Fix the
other parameters, and change the computing capacity of edge
servers. Combining Fig. 7, our algorithm can always get the

Fig. 7. Comparison of latency with changing computing capacity of edge
servers.

TABLE II
DATASET SCALE SETTING

lowest response latency compared to other algorithms, and the
convergence speed is always the fastest. In addition, the overall
performance of Random-Random-RW is better. As the comput-
ing capacity of the server increases, FIFO-SIZE-RW begins to
show its advantages. But when the computing power of the server
tends to be saturated, SIZE-SIZE-RW obtains a lower response
latency, while FIFO-SIZE-RW performs the worst. This is be-
cause when the computing capacity of the server increases, the
driving relationship between the data and the service has little
effect on the experimental results. The SIZE performs better in
the service deployment stage, and FIFO performs better in the
data placement stage.

B. Ablation Study

To further evaluate the effectiveness of different strategies in
our proposed method, we have also conducted some ablation
studies. By replacing our proposed strategies with different
baseline strategies, new methods are obtained as comparison.
Then, by fixing other parameters, and changing the number
of data blocks, services, and edge servers respectively, we can
obtain five data sets with different scale (Table II).

1) Change the Strategy in the First Stage: From Fig. 8, it can
be found that our algorithm PDPS-HA-RW performs the best on
the five datasets. Although the other three algorithms Random-
HA-RW, SIZE-HA-RW, and FIFO-HA-RW also showed good
results when the data set was small. As the scale of the data
set increased, the response latency obtained by our algorithm
is lower and lower than the other three algorithms, and the
effect is more obvious. When the data set is large, although
the convergence speed of our algorithm in the third stage (RW)
is always higher than SIZE-HA-RW and FIFO-HA-RW, but
γ is always stable below 0.5% for almost negligible time. In
addition, although SIZE-HA-RW and FIFO-HA-RW perform
well on dataset I, they take too much time to converge in the RW
stage. And, from another perspective, the good performance of
these two algorithms is partly due to our RW algorithm, and
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Fig. 8. Ablation studies of changing the strategy in the first stage.

Fig. 9. Ablation studies of changing the strategy in the second stage.

SIZE-HA and FIFO-HA themselves may not be outstanding.
Overall, compared with the other three baseline algorithms, the
PB algorithm can make our algorithm get lower response latency.

2) Change the Strategy in the Second Stage: From Fig. 9,
it can be found that our algorithm PDPS-HA-RW performs
the best on the five datasets. Although the other three algo-
rithms PDPS-Random-RW, PDPS-SIZE-RW, and PDPS-FIFO-
RW also showed good results when the data set was small. As
the scale of the data set increased, the response latency obtained
by our algorithm is lower and lower than the other three algo-
rithms, and the effect is more obvious. In addition, the γ of our
algorithm in the third stage (RW) is almost zero, which means
that our algorithm has achieved near-optimal when the second
stage (HA) is completed. The other three baseline combination
algorithms all take too much time to converge in the RW stage.
Among them, γ obtained by PDPS-SIZE-RW in the RW stage
on the III reached a high of 25%, which shows that part of the
credit for the algorithm’s good results on this data set belongs to
us RW algorithm. Overall, our HA algorithm not only achieves
lower response latency, but also has the best convergence effect
compared to the other three baseline combination algorithms.

C. Comparison With SOTA Algorithms

To further evaluate the performance of our proposed method,
we compared it with several SOTA algorithms, DESGA [7],
hJTORA [43], EISPA [20] and AES-JDR [36]. Their time com-
plexities are O(n2), O(n3), O(n3) and O(n2), respectively.

1) Change the Number of Data Blocks, Services and Edge
Servers Respectively: From Fig. 10(a), when N is small, the
performance of hJTORA, DSEGA, EISPA and AES-JDR is al-
most the same. However, with the increase of N , the data-driven

relationship between data and services gradually becomes more
complex, and the performance of AES-JDR is better. After ap-
plying the RW, AES-JDR-RW has a more obvious optimization
effect than hJTORA-RW, DSEGA-RW and EISPA-RW. From
Fig. 10(b), as M increases, both before and after applying
RW, AES-JDR performs slightly better than hJTORA, DSEGA
and EISPA. From Fig. 10(c), AES-JDR is always better than
hJTORA, DSEGA and EISPA. Moreover, no matter how H
changes, our algorithm and these SOTA algorithms are always in
a small fluctuation state on the whole. After applying RW, AES-
JDR-RW significantly outperforms hJTORA-RW, DSEGA-RW
and EISPA-RW.

Combined with Fig. 10(a)–(c), our algorithm is not greatly
affected by the three parameters of N , M , and H , and whether
applying RW or not, our algorithm can obtain the lowest re-
sponse latency. This is because our algorithm jointly optimizes
data placement and service deployment in a distributed cloud-
edge environment to minimize response latency. However, these
SOTA algorithms did not take this into account. As a result, after
applying RW to optimize their data placement and service de-
ployment schemes, the response latency is significantly reduced.

2) Change Storage, Memory and Computing Capacity of
Edge Servers Respectively: From Fig. 11(a), as the storage ca-
pacity of edge servers increases, AES-JDR consistently outper-
forms hJTORA, DSEGA and EISPA. However, when the storage
capacity of the edge server reaches saturation, hJTORA-RW per-
forms better than DSEGA-RW, EISPA-RW and AES-JDR-RW
with the optimization of the RW algorithm. From Fig. 11(b)
and (c), AES-JDR is always better than hJTORA, DSEGA
and EISPA. After applying RW, AES-JDR-RW significantly
outperforms hJTORA-RW, DSEGA-RW and EISPA-RW.

Combining with Fig. 11(a)–(c), our algorithm is not greatly
affected by the change of edge server capability, and whether ap-
plying RW or not, our algorithm both obtain the lowest response
latency. The performance of hJTORA, DSEGA, EISPA and
AES-JDR may be affected by the driving relationship between
data and service. Since our dataset is randomly generated by
program control, there may be some small differences in the
driving relationship between datasets, which leads to fluctua-
tions in the results of these algorithms, but these fluctuations
are acceptable within the range. In addition, after the applica-
tion of RW algorithm, the response latencies of AES-JDR-RW,
DSEGA-RW, hJTORA-RW and EISPA-RW were significantly
reduced.

3) Running Time and Resource Consumption: In real-world
applications, particularly in resource-constrained environments,
the computational overhead of algorithms becomes critical.
Therefore, to thoroughly evaluate algorithm performance, it
is essential to prioritize computational efficiency and conduct
a comprehensive assessment of resource consumption. Under
Dataset III in Table II, we conducted multiple experiments to
obtain the running time, CPU utilization, and memory usage of
the algorithms. The scale of this dataset is already quite large,
as indicated by the comparative algorithm papers we referenced
and the results of our practical research.

The experimental results are presented in Table III. Under
comparable conditions of CPU utilization and memory usage,
PDPS-HA-RW demonstrates significant advantages in running
time performance. As elaborated in Section VI-C2, this is pri-
marily because the PDPS-HA algorithm inherently approaches
near-optimal solutions, requiring only minimal iterations during
the RW phase to achieve convergence. Furthermore, PDPS-HA

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 15,2025 at 15:02:32 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: JOINT DATA PLACEMENT AND SERVICE DEPLOYMENT IN DISTRIBUTED CLOUD-EDGE ENVIRONMENT 2139

Fig. 10. Comparison of latency with changing the number of N,M,H: (a) changing the number of data blocks N ; (b) changing the number of services M ;
(c) changing the number of edge servers H .

Fig. 11. Comparison of latency with changing capabilities of edge servers: (a) changing the storage capacity; (b) changing the memory capacity; (c) changes the
computing capacity.

TABLE III
COMPARISON OF RUNNING TIME AND RESOURCE CONSUMPTION

exhibits superior time complexity compared to other algorithms.
In contrast, alternative approaches employing PSO, GA, or other
methods necessitate multiple optimization iterations during the
RW phase, consequently resulting in substantially prolonged
execution times.

When the total amount of resources is sufficient but con-
strained, the data placement strategy of hJTORA may lead
to suboptimal or unbalanced resource allocation—this occurs
because the strategy prioritizes selecting the first server that
meets the conditions, which can negatively impact the initial
environment for subsequent service deployment. Furthermore,
during the service deployment phase, the feasible space for
move and exchange operations is significantly reduced, making
it difficult to effectively optimize bottleneck services. The GA
for service deployment in DSEGA may face a lack of diversity
among feasible solutions during population initialization. At the
same time, the effectiveness of evolutionary operations such
as mutation is reduced, leading to a higher risk of premature
convergence, or requiring more iterations to find a satisfactory
solution. As a result, the quality and stability of the solutions may
be worse compared to when resources are abundant. For EISPA,
resource constraints reduce the effective search space, leading to
a situation where a large number of particles representing service
deployment strategies may fall into infeasible regions. This
decreases the diversity of particles during the initialization phase
and increases the risk of converging to local optima. With the
feasible solution space narrowed down, the algorithm frequently

TABLE IV
COMPARISON OF STANDARD DEVIATION

encounters resource boundaries when updating particle posi-
tions and velocities, further limiting its exploration capability.
In the first stage of AES-JDR, when high-quality node resources
are in short supply, the rounding step may force the deployment
of microservices in suboptimal locations, leading the solution
quality close to the theoretical worst-case scenario. The routing
optimization in the second stage heavily relies on the deploy-
ment quality of the previous stage. When critical microservices
are sparsely deployed or located in unfavorable positions, the
flexibility of adaptive routing is significantly reduced.

4) Standard Deviation: Similarly, to verify the stability of
the algorithm, we conducted multiple experiments and per-
formed standard deviation analysis on the results. We selected
the results from Dataset III in Table II for presentation. It can
be observed from the Table IV that our algorithm achieves the
smallest standard deviation, which demonstrates superior stabil-
ity. As can be seen from Figs. 10, 11, Tables III, and IV, our al-
gorithm not only produces the solution with the lowest response
latency, but also demonstrates significant superiority in terms of
actual running time, resource consumption, and stability.

5) Effectiveness of RW: From Figs. 8, 9, 10, and 11, our
proposed RW-DAS, namely the third-stage algorithm RW, can
be seamlessly integrated into various algorithms to effectively
optimize the existing data placement and service deployment
schemes with a notably significant optimization effect on re-
sponse latency. It is worth noting that the RW algorithm has
a higher degree of adaptation to the algorithms with faster
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Fig. 12. Comparison of efficiency count with changing of N,M,H: (a) changing the number of data blocks N ; (b) changing the number of services M ;
(c) changing the number of edge servers H .

convergence (such as our HA algorithm), and while achieving
better optimization results, the time cost is negligible. For other
algorithms with slower convergence speed (such as the three
baseline algorithms), the more significant the optimization ef-
fect, the higher the time cost.

We also noticed that although the performance of PDPS-HA
has been improved by RW, the effect is not very obvious. This
is because the PDPS-HA we proposed is good enough and
has something in common with RW. In the data placement
stage, PDPS is less likely to fall into local optimum than other
algorithms. In the subsequent service deployment stage, the cost
matrix of HA is generated based on the data request latency of
the service and the service execution latency, which is similar
to the response weight. Other algorithms require adjustments
during the RW phase, but the PDPS-HA algorithm has already
preemptively achieved these adjustments during the HA phase.
Taking these points into account, it is evident that the PDPS-HA
is already quite close to the optimal solution, thus requiring
minimal iterations during the RW phase to converge to the
optimum.

D. Efficiency Experiment and Analysis

In Sections VI-A, VI-B, and VI-C, we compared with the five
baseline combination algorithms and several SOTA algorithms
to perform effect and parameter experiments, and also performed
ablation experiments for different strategies of the proposed
method, and showed that our method performs best in terms
of both response latency and convergence. Since the third-stage
optimization algorithm (RW) performs well on other comparison
algorithms and our first two-stage algorithm (PDPS-HA), we
will go further in this section to verify the efficiency of the
RW strategy. We selected three baseline combination algorithms
Random-HA-RW, PDPS-SIZE-RW, FIFO-FIFO-RW that per-
formed well in previous experiments, and also hJTORA-RW
and DSEGA-RW for comparison.

1) Change the Number of Data Blocks, Services and Edge
Servers Respectively: As shown in Fig. 12(a), as N increases,
our algorithm always maintains the lowest number of iterations
compared to the other five algorithms. This shows that we do not
need to spend a lot of time on the RW stage, and the approximate
optimal solution has been obtained when the previous two stages
of PDPS-HA are completed. The performance of Random-HB-
RW is sub-optimal, and the count is always stable below 5 times.
Combined with the analysis in the previous Section VI-B2, we
can see that most of the credit for this performance is due to
our HA algorithm. When N = 75, the count of all algorithms
is maintained at about 2.5, that is, it has basically converged

when RW is not used. The reason is that the driving relationship
between data blocks and services is relatively balanced at this
time, there is a relatively reasonable resource competition be-
tween storage resources and computing resources in the entire
heterogeneous network, and the load balance of the system
tends to be stable. From Fig. 12(b), our algorithm performs the
best, the Random-HA-RW algorithm performs sub-optimally,
and DSEGA-RW and PDPS-SIZE-RW perform poorly. This
shows when the driving relationship between data and service is
relatively tense, DSEGA and PDPS-SIZE are prone to fall into
local optimum. After applying our RW algorithm, a better data
placement and service deployment scheme can be obtained at a
certain time cost. From Fig. 12(c), our algorithm has obvious ad-
vantages over other algorithms, and Random-HB-RW performs
sub-optimal. Furthermore, hJTORA-RW performs well until
H < 175, but performs poorly when H ≥ 175. The DSEGA-
RW iterates as many as 27 times in the RW stage whenH = 175.
It means a great cost of time for lower response latency. When
H = 150, the count of all algorithms is stable at around 5, which
means that it has basically converged before the RW algorithm
is used. The reason is that the number of edge servers is basically
saturated at this time, there is a relatively reasonable resource
competition between storage resources and computing resources
in the entire heterogeneous network, and the load balance of
the system tends to be stable. Looking at Fig. 12(a)–(c), our
algorithm has basically converged after the first two stages are
completed, and the obtained solution is approximately optimal,
which makes us not need to spend too much time in the RW
stage for further optimization.

2) Change Storage, Memory and Computing Capacity of
Edge Servers Respectively: From Fig. 13(a), as the storage
capacity increases, our algorithm always maintains the lowest
number of iterations compared to the other five algorithms. This
shows that we do not need to spend a lot of time on the optimiza-
tion of the RW stage, and the approximate optimal solution has
been obtained when the two stages of PDPS-HA are completed.
The performance of Random-HA-RW is sub-optimal, and the
count is always stable at around 5. In addition, when the storage
capacity tends to be saturated, the count of PDPS-SIZE-RW
reaches nearly 45 times. This shows that the PDPS-SIZE algo-
rithm is easy to fall into the local optimum when the storage
capacity of the edge server is large enough. From Fig. 13(b), our
algorithm performs the best, and Random-HA-RW performs the
second. As the memory capacity of edge servers increases, the
count of other algorithms are basically maintained below 10. At
this time, the probability of placing multiple services on an edge
server is high, and the driving relationship between data and
services has little influence on the experimental results, so that
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Fig. 13. Comparison of efficiency count with changing capabilities of edge servers: (a) changing the storage capacity; (b) changing the memory capacity;
(c) changes the computing capacity.

these algorithms can already obtain good solutions in the first
two stages. From Fig. 13(c), our algorithm has obvious advan-
tages over other algorithms, Random-HA-RW is sub-optimal,
and other algorithms are always in a state of mutual game. But on
the whole, the two SOTA algorithms perform worse and worse
in terms of count as the computing capacity of edge servers
increases. This shows that as the computing capacity increases,
hJTORA and DSEGA are easy to fall into local optimum, and
they spend a great deal of time in the RW stage to obtain a
lower response latency. Looking at Fig. 13(a), (b), and (c), our
algorithm has basically converged after the first two stages are
completed, and the obtained solution is approximately optimal,
which makes us not need to spend too much time in the RW
stage for further optimization.

VII. CONCLUSION

Most existing studies about application deployment consider
either service deployment or data placement, rather than their
joint optimization. Differing from them, this study considers
the driving relationships between data and services for data-
intensive applications in a cloud-edge collaborative environ-
ment, and aims to obtain a desired data placement and service
deployment scheme so as to ensuring the quality of services.
We formulate the problem and propose a priority-based data
placement strategy to identify a data placement scheme. Next
we transform the problem into a classical assignment prob-
lem, and propose a service deployment strategy based on an
improved Hungarian algorithm to find a service deployment
scheme. Then, in order to reduce the response latency, we
propose a response-weight-based a dynamic adjustment strategy
to dynamically adjust the data placement scheme and service de-
ployment scheme to obtain the final solution. Finally, we perform
a series of experiments to prove that our proposed methodology
can obtain lower response latency than other compared methods.
Different composite patterns among service components and
more complex associations between data and services should be
considered as our next research.
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