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Abstract—Current state-of-the-art QoS prediction methods face
two main limitations. First, most existing QoS prediction ap-
proaches are centralized, gathering all user-service invocation
QoS records for training and optimization, which causes privacy
breaches. While some federated learning-based methods consider
user privacy in a distributed way, they either directly upload local
trained parameters or use simple encryption for global aggregation
at the central server, thus failing to truly protect user privacy. Sec-
ond, existing federated learning-based methods neglect distributed
user-service topology and latent behavior-attribute correlations,
compromising QoS prediction accuracy. To address these limita-
tions, we propose a novel framework named Privacy-Enhanced
Federated Expanded Graph Learning (PE-FGL) for secure QoS
prediction. It first conducts user-service expansion on the invo-
cation graph with advanced privacy-preserving techniques, up-
grading first-order local QoS invocations to high-order interaction
relationships. Then, it extracts hybrid features from the expanded
invocation graph via deep learning and graph residual learning.
Finally, a two-layer secure mechanism of federated parameters
aggregation is designed to enable collaborative learning among
users through local parameter segmentation and global aggre-
gation, achieving effective and secure QoS prediction. Extensive
experiments on WS-DREAM demonstrate effective QoS prediction
across multiple metrics while preserving privacy in user-service
invocations.

Index Terms—Web service, secure QoS prediction, expanded
invocation graph, hybrid feature extraction, federated parameter
aggregation.

I. INTRODUCTION

IN recent years, the proliferation of web services has made
them an important driving force for developing integrated

applications through Service-Oriented Architectures (SOA) and
the Internet of Services (IoS). Service providers are rapidly
introducing new web services, leading to an abundance of similar
options and making it increasingly challenging for consumers
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to choose the most suitable service. Quality of Service (QoS)—
which encompasses diverse metrics such as response time,
throughput, availability, and cost—emerges as a vital discrimi-
nant for comparable services by assessing their non-functional
attributes. However, given the impracticality of monitoring every
web service invocation to collect QoS data, researchers are
confronted with the task of effectively predicting QoS based
on sparse user-service historical invocations. It is of paramount
importance for service-oriented applications, including service
discovery, selection, recommendation, and mashup creation [1],
[2], [3].

Collaborative Filtering (CF) is fundamental to QoS pre-
diction, with approaches categorized into memory-based and
model-based ones. Memory-based CF approaches predict un-
observed QoS values using historical data and similarity met-
rics such as Pearson Correlation Coefficient (PCC) [4] and
Ratio-Based Similarity (RBS). However, they are susceptible
to performance degradation due to the sparsity of user-service
interaction records, which negatively impacts prediction accu-
racy. Model-based CF approaches, including clustering, matrix
factorization [5], [6], and machine learning algorithms [7], [8],
have been developed to deduce user and service feature rep-
resentations, reveal underlying linear or nonlinear associations
to enhance QoS prediction accuracy. Furthermore, researchers
have integrated contextual information of users and services,
such as geographic location and temporal invocation series,
to refine QoS prediction accuracy [9], [10]. Recently, deep
learning models have been employed to extract complex non-
linear feature representations, further improving QoS prediction
performance [1], [3], [11].

Despite advancements in QoS prediction approaches, they
still fail to ensure user privacy and achieve optimal performance
in service-oriented applications. First, traditional methods rely
on centralized data processing, which collects users’ historical
QoS data and exposes privacy during similarity calculation or
model training. Although some federated learning approaches,
such as those in [12], [13], upload local parameters to a cloud
server or use basic encryption, they may not sufficiently protect
model parameters, due to suffering from the reconstruction
risk of original data by attackers. Second, recent federated
learning-based QoS prediction approaches, like those in [14],
[15], partition historical QoS data by users, neglecting complex
user-service topological structures, which hinders the extraction
of deep features and reduces QoS prediction performance.

To address the two limitations, we propose a novel framework
named Privacy-Enhanced Federated expanded Graph Learning
for secure QoS prediction (PE-FGL). Specifically, we design
a privacy-preserving graph expansion method that generates
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high-order user-service invocation relationships by expanding
one-order local QoS records in a distributed manner. Then, we
present a Hybrid Feature Extraction (HFE) network based on
deep learning and graph residual learning to learn sophisticated,
high-dimensional feature representations and complex interac-
tion patterns, thereby improving the deep feature extraction
of users and services. Finally, we design a multi-granularity
secure federated parameter aggregation strategy that employs
cryptographic measures [16], [17] to ensure secure collaborative
learning through the partitioning of local parameters, resulting
in effective and secure QoS prediction.

To ascertain the performance of our proposed PE-FGL, we
carry out a comprehensive suite of experiments on the WS-
DREAM dataset [18]. It encompasses QoS invocation records
from 5,825 web services and 339 users, spanning 74 diverse
geographic locales, totaling 1,974,675 user-service QoS invoca-
tion records. They are segregated into distinct user-service QoS
invocation clusters based on service users, thereby maintaining
stringent user privacy standards. The results demonstrate that
PE-FGL outperforms state-of-the-art baselines across multi-
ple evaluation metrics, particularly in privacy-preserving QoS
prediction, thereby validating its superior performance in QoS
prediction.

The main contributions are summarized as follows:
� We propose a novel framework called Privacy-Enhanced

Federated Expanded Graph Learning for secure QoS pre-
diction (PE-FGL). It incorporates Federated Learning [13],
[19] as the foundation to facilitate collaborative training
of a comprehensive QoS prediction model across multiple
service users maintaining the decentralization of datasets,
and applies privacy computing techniques to enhance se-
cure QoS prediction by partitioned local parameter upload
transmission and back propagation. Moreover, PE-FGL
employs Graph Neural Networks (GNNs) [20] to analyze
the extended user-service invocation graph for each entity,
capturing complex interactions and extracting high-order
latent features, which enhances both the security and ac-
curacy of QoS prediction.

� We propose a suite of secure QoS prediction approach in
federated learning, where it includes creating user-service
expanded invocation graph by the encryption and decryp-
tion of users’ and services’ interactive information, extract-
ing hybrid features of users and services by deep learning
and graph residual learning, and two-layer local parameters
segmentation and aggregation by intermediate computing
units and federated aggregation server.

� We conduct extensive experiments on the WSDREAM
dataset. The results show that, while guaranteeing to pro-
tect user privacy, PE-FGL can still achieve superior QoS
prediction accuracy compared to state-of-the-art privacy-
preserving competing approaches.

The remainder of this paper is organized as follows.
Section II reviews related work. Section III formulates the
problem of privacy-preserving QoS prediction. Section IV illus-
trates the proposed framework of PE-FGL. Section V elaborates
the approach of privacy-preserving QoS prediction. Section VI
displays and analyzes the experimental results. Section VII
discusses the practical significance and challenges of PE-FGL.
Section VIII concludes the paper and discusses future work.

II. RELATED WORK

A. Collaborative Filtering and Deep Learning Based QoS
Prediction

QoS prediction approaches based on Collaborative Filtering
(CF) comprise memory-based and model-based methods. For
memory-based approaches, Shao et al. [21] utilized PCC for
prediction but encountered data sparsity issues. Zheng et al. [7]
combined user and service neighborhoods for better accuracy,
yet showed limited neighborhood feature modeling. Tang et
al. [10] proposed LACF with location information to ad-
dress sparsity, though raising privacy concerns. In model-based
methods, Devi et al. applied Non-negative Matrix Factorization
(NMF) [5], but faced limitations due to computational com-
plexity and non-negativity constraints. Mnih et al. developed
Probabilistic Matrix Factorization (PMF) [6], which struggled
with non-linear relationship modeling. Tang et al. [22] and Xu et
al. [23] introduced NAMF with user neighborhood data and en-
hanced it with reputation and geographical information, yet con-
fronted challenges in data compatibility and feature integration.

The integration of deep learning into QoS prediction has
brought innovative approaches. He et al. [24] introduced NCF,
utilizing MLP to capture complex nonlinear interactions, which
significantly improved prediction accuracy but neglected con-
textual information of users and services. Zhang et al. [25]
developed LDCF, integrating MLP with a similarity-adaptive
calibrator for enhanced QoS prediction accuracy, yet it faces
challenges in computational complexity and privacy protection.
Xia et al. [11] proposed JDNMFL, employing CNN to analyze
multi-source data for improved accuracy, though lacking adapt-
ability analysis in dynamic environments. Zou et al. [26] intro-
duced NCRL, a twin-tower deep residual network incorporating
neighborhood information, but failed to consider the structural
information between users and services. Lu et al. [27] addressed
noise and label imbalance issues through a supervised feedfor-
ward neural network modeling Gaussian feature distributions,
but showed limitations in data distribution assumptions.

B. Privacy-Preserving QoS Prediction

Traditional centralized approaches for predicting QoS typ-
ically involve collecting and analyzing user-service QoS in-
vocation records, which poses a risk of sensitive user privacy
information leakage.

To enhance privacy protection, Zhu et al. [28] introduced a
service recommendation framework utilizing data obfuscation
techniques to protect user information, though it may introduce
noise affecting QoS prediction accuracy. Liu et al. [29] subse-
quently developed a collaborative framework for QoS prediction
incorporating differential privacy to protect individual data
while maintaining prediction accuracy, yet its effectiveness may
vary depending on data characteristics and service properties.
Extended from [29], Zhang et al. [30] employed fine-grained
differential privacy strategies and collaborative filtering to dy-
namically mask QoS data, while leveraging server geographical
location information to access and utilize records from users
with similar profiles for more accurate QoS prediction.

With the widespread application of federated learning in
service computing, Jin et al. [31] proposed a security-aware
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QoS prediction method for mobile edge computing environ-
ments. While it protected distributed data security, it encoun-
tered practical implementation challenges, including substantial
communication overhead and potential security vulnerabilities.
To address these limitations, Zhang et al. [14] introduced a fed-
erated learning QoS prediction method based on data reduction
techniques. Although it achieved data privacy protection, the
model remained susceptible to security risks in communication
channels and parameter aggregation processes. Recently, Zou
et al. [15] designed a comprehensive joint QoS prediction
framework that significantly enhanced prediction accuracy by
integrating hierarchical clustering algorithms, fine-grained user
partitioning strategies, and context-aware deep neural networks.
However, it failed to adequately consider the high-order struc-
tural dependencies in user-service interactions, thereby limiting
the model’s expressive capability as well as privacy protection
of user-service QoS invocations.

III. PROBLEM FORMULATION

In this section, we investigate secure QoS prediction with
a special emphasis on issues pertaining to privacy protection
of user-service invocations. By presenting formal definitions,
we formulate the problem of securely predicting unknown QoS
values.

Definition 1 (Service User): A service user is an entity that has
utilized at least one web service and is characterized by a unique
identifier and associated location attributes. Specifically, a useru
in the set U = {u1, u2, . . ., um} is represented by a tuple u =<
ID,RG,AS >, where ID denotes the user’s unique identifier,
and RG,AS represent the user’s multi-granularity geographical
positioning.

Here, the location information of a service user primarily
comprises two parts: the Region (RG) and the Autonomous
System (AS).

Definition 2 (Web Service): For the QoS prediction prob-
lem, we focus on the non-functional attributes of web services,
which are represented as tuples comprising an identifier and
location information. Specifically, within the collection S =
{s1, s2, . . ., sn}, a web service is denoted by a tuple s =<
ID,RG,AS >, where ID is the service’s unique identifier. In
the same way, RG and AS refer to the service’s Region and
Autonomous System, respectively.

Given a service user u, there are a set of corresponding
web services invoked by the user with privacy-preserving QoS
invocation records. It is defined as below.

Definition 3 (Privacy-Preserving QoS Invocation Record):
A user-service invocation record is defined as a triplet r =<
u, s, ru,s >, where u is a user from U , s is a web service from
S, and ru,s is the resulting QoS value from invoking s by u.

Matrix R captures user-service QoS interactions, with rows
representing users and columns representing services. Each
entry Ru,s denotes the QoS value for user u invoking service
s. An interaction is represented by the triplet < ui, sj , rui,sj >,
where rui,sj is the corresponding QoS value. The absence of the
triplet in R indicates that u has not invoked s.

Therefore, how to effectively predict missing QoS value under
the condition of protecting the privacy of user-service invocation
records has become a challenging research to be solve. It is
defined as below.

Definition 4 (Secure QoS Prediction Problem): To address
the challenge of QoS prediction within a privacy-preserving
context, we define a secure QoS prediction problem as Ω =<
U,S,R′, u, s >, where it consists of a set of users U , a set of
services S, and a privacy-preserving QoS invocation records set
R′ that omits any user-service pair < u, s > for preserve the
privacy of user-service invocations.

In contrast to traditional centralized QoS prediction prob-
lem, it employs a collection of disjoint submatrices R′ =
{R1, R2, . . ., Rm} rather than the entire matrix R, where each
user-service QoS invocation record is transfered to a privacy-
preserving representation. Thus, it ensures user privacy while
performing the prediction of < u, s, r̂u,s >, by secured collab-
orative way among multiple service users.

IV. FRAMEWORK

To achieve secure and effective QoS prediction, the pro-
posed framework PE-FGL, illustrated in Fig. 1, consists of
three interrelated components: privacy-preserving user-service
graph expansion, hybrid feature extraction, and secure federated
parameters aggregation. The processes of these components are
described below.
� The privacy preserving user-service graph expansion mod-

ule starts with users generating anonymized vectors to con-
ceal identities and transmit encrypted invocation records
with associated privacy metadata to the server. Subse-
quently, the server establishes user-service invocation rela-
tionships using their identifiers and adaptively distributes
the necessary expansion associations. Each user then de-
crypts the expanded information to construct a high-order
user-service invocation graph.

� Based on the privacy-preserving user-service expanded in-
vocation graph, hybrid feature extraction embeds the initial
features of users and services using their descriptive infor-
mation. Initially, the features are input into a multi-layer
perceptron to extract deep semantic features. Subsequently,
graph residual learning is employed to refine these features
by aggregating information from neighboring nodes in the
user-service expanded invocation graph, capturing high-
order interactive features. These two kinds of extracted
features are ultimately combined at the predictive layer to
predict unknown QoS within each service user.

� To facilitate global learning among service users while
training their own local QoS prediction models, the multi-
granularity federated parameter aggregation adopts a two-
level structure for segmenting and encrypting parameters.
Parameters are segmented and encrypted pre-transmission,
and intermediate calculation nodes bridge users and the
central aggregation server, amalgamating parameters in
subsets. The combined security measures of parameter
segmentation and homomorphic encryption guarantee the
secure aggregation of parameters, while improving the ef-
fectiveness of QoS prediction by distributed collaboration
among service users.

V. APPROACH

A. Privacy-Preserving User-Service Invocation Graph
Expansion

In the context of federated learning, user local datasets
mainly consist of service invocation QoS records, which are

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 12,2025 at 02:36:29 UTC from IEEE Xplore.  Restrictions apply. 



1644 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

Fig. 1. The framework of privacy-enhanced federated expanded graph learning for secure QoS prediction.

instrumental in creating first-order user-service invocation
graph. However, research by Zhou et al. [32] suggests that
GNNs are more effective when integrating second or third-order
neighborhood data. Our goal is to enhance user local data
to construct high-order user-service invocation graphs, while
rigorously maintaining user privacy.

First, we employ a key distribution strategy using a Key
Distribution Center (KDC) to securely distribute a global
key to users through asymmetric encryption. We then present
a privacy-aware graph expansion mechanism, as shown in
Fig. 2, enabling users with the global key to securely expand their
local QoS from one-order to high-order user-service invocation
relationships via an expansion server, thereby ensuring sensitive
data confidentiality. Before graph expansion, the local dataset
Di of user ui comprises user-service interaction information, as
depicted by:

Di = {(ui, sj ,mi,j) | ∀sj ∈ S} (1)

Where ui and sj are the identifiers for the i-th user and j-th
service, respectively. S represents the aggregation of services,
and mi,j aggregates all relevant details pertaining to the usage
of service sj by user ui.

The overall graph expansion process is shown in Algorithm 1.
In the user upload phase, the algorithm secures data transmission
by encrypting user information through hash functions and AES
encryption. The server aggregation phase performs global inte-
gration of encrypted data and k-step graph expansion. In the user
download phase, users decrypt the expanded subgraph structures
to complete local higher-order graph construction. Based on
Algorithm 1, we can further formalize the key operations, the
detailed procedure is as follows.

Fig. 2. Privacy-preserving user-service invocation graph expansion.

1) One-Order User Service Invocation Graph Encryption:
To protect user privacy during graph expansion and ensure node
anonymization, user ui uses the anonymous vector Vui

. We
introduce a random vector generator to guarantees each user’s
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vector is unique, unpredictable, and uncorrelated, as expressed
by the formula:

Vui
= Gen(ui, seed, params) (2)

The function Gen(*) generates anonymous vectors Vui
using

the user identifier ui and a cryptographically secure seed. It
ensures unique vector generation, distinguishes user informa-
tion, and hides real identities to prevent identity leakage. The
secure seed guarantees randomness, preventing attackers from
inferring user information. The params parameter optimizes
vector characteristics, balancing complexity and enhancing the
model’s ability to capture user-service relationships and improve
QoS prediction accuracy.

To enhance privacy, ui is encrypted as u′
i by SHA-512 hash

algorithm [33]. As shown in (3), HSHA(∗) is the hash function.

u′
i = HSHA(ui) (3)

For user privacy protection, we finally use the Advanced En-
cryption Standard (AES) [16] symmetric encryption algorithm,
users encrypt sj and Vui

with the global key as the AES cipher
key. The process is detailed as follows:

s′j = EncAES(key, sj)

V ′
ui

= EncAES(key, Vui
) (4)

Here, key denotes the global key, and s′j , V ′
ui

are the AES-
encrypted ciphertexts of sj and Vui

, respectively. In the graph
expansion module, SHA-512 hashes user identifiers, ensuring
privacy and data integrity, while AES encrypts services and
anonymous vectors to maintain confidentiality. User IDs are
SHA-512 hashed, and services and anonymous vectors are
AES-encrypted before being uploaded to the server. The server
builds a global encrypted graph, ensuring user ID integrity
with SHA-512 and ensuring service data confidentiality with
AES. During graph distribution, the user decrypts service nodes
using AES and combines SHA-512-processed ID information
to expand the local invocation graph for QoS prediction. This
synergy enables secure data handling, supporting the stable and
private operation of PE-FGL.

The ciphertext dataset D′
i that needs to be uploaded to the

server for neighbor user expansion should be the ciphertext
invocation relation Ii with the anonymization vector V ′

ui
as in

the following equation:

I′
i = {(u′

i, s
′
j) | ∀sj ∈ S}

D′
i = {I′

i, V
′
ui
} (5)

2) Global User Service Invocation Graph Construction: The
graph aggregation server merges the ciphertext dataset D′

i from
users into the global ciphertext dataset D′:

D′ =
n⋃

i=1

D′
i (6)

Usingu′
i and s′j as indices, the server can assemble a global en-

crypted user-service invocation graph from D′ using a specified
alignment method, all without data decryption. The definition
of this graph is as follows:

G′ = ( U′,S′, E ,A′) (7)

Where U′ and S′ respectively denote the sets of encrypted
user and service. The inclusion of a tuple (u′

i, s
′
j) in the dataset

Algorithm 1: Privacy-Preserving User-Service Graph Ex-
pansion.

D′ signifies an edge eu′
i,s

′
j

within the encrypted graphG′. Conse-
quently, the edge setE′ can be defined by the following relation:

E = {eu′
i,s

′
j
| (u′

i, s
′
j) ∈ D′} (8)

Moreover, an attribute function A is established to bind
anonymization vector V ′

ui
to its respective user node.

A : V ′
ui

→ u′
i (9)

3) Adaptive Extended Graph Distribution: For the target
user u′

i, the server adaptively constructs an expanded graph.
Specifically, we initiate a k-step graph expansion operation
from u′

i on the graph G′, which results in the construction of
the expanded graph G′

k(u
′
i) for u′

i:

G′
k(u

′
i) = (U′

k,S′
k, Ek,A)

U′
k(u

′
i) = {u′ ∈ U′ | dist(u′

i, u
′) ≤ K + 1}

S′
k(u

′
i) = {s′ ∈ S′ | dist(u′

i, s
′) ≤ K + 1}

Ek(u′
i) = {eu′,s′ ∈ E | u′ ∈ U′

k ∧ s′ ∈ S′
k} (10)

Among them, dist(∗, ∗) calculates the length of the shortest
path between two nodes in graph G′. U′

k(u
′
i), S′

k(u
′
i), Ek(u′

i),
and A respectively represent the set of encrypted user nodes,
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encrypted service nodes, edge set, and attribute function in the
expanded graph G′

k(u
′
i).

Upon receiving the server-distributed expanded graphG′
k(u

′
i),

user ui decrypts it for a usable model training graph. If the
graph includes a neighboring user u′

n who utilized service s′m,
decryption of s′m and V ′

un
proceeds via AES with the global key.

sm = DecAES(key, s
′
m)

Vun
= DecAES(key, V

′
un

) (11)

Given that u′
n is encrypted using the SHA-512 hashing algo-

rithm, which is non-invertible, the user-side expanded graph can
be represented as:

Gk(ui) = (U′
k(ui),Sk(ui), Ek(ui),A) (12)

Similarly, if we specify a target service sj , after the above
process, we can obtain an expanded graph Gk(sj) centered on
the service sj .

Gk(sj) = (U′
k(sj),Sk(sj), Ek(sj),A) (13)

Since u′
n is anonymized and cannot be decrypted in reverse,

and the corresponding vertex representation Vun
contains no

information that could directly identify the neighboring user,
this design ensures that the privacy of neighboring nodes is
effectively protected, even during the data expansion process.

4) Time Complexity Analysis: From the perspective of a sin-
gle user, we analyze the complexity of each part involved in
Algorithm 1 as below.

User Side Upload: For a single user, operations such as ob-
taining the global key and generating an anonymous vector have
a time complexity of approximately O(1). The AES encryption
of m services and the anonymous vector, with each encryption
being O(1), results in the time complexity of O(m).

Server Side Aggregation: The server’s aggregation operation
comprises two main steps. First, constructing a global graph
from N users each connected to an average of m services, with
a complexity of O(Nm). Second, graph expansion on the user-
service bipartite graph. Given that each user invokes m services
on average, and each service is invoked by n users on average,
with N total users and k expansion steps, the complexity after
k steps is approximately O(Nm1+k/2nk/2).

User Side Download: The expanded graph received by the
user contains m1+k/2 + nk/2 nodes. Decrypting the service
information and neighboring users’ anonymous vectors, with
each decryption being O(1), results in the time complexity of
O(m1+k/2 + nk/2).

Overall Complexity: Combining the three parts, the to-
tal time complexity of the Privacy-Preserving User-Service
graph expansion algorithm is O(m+Nm+Nm1+k/2nk/2 +
m1+k/2 + nk/2). For the highest complexity consumption
O(Nm1+k/2nk/2), it could be still very efficient while perform-
ing user-service invocation graph expansion, since k is normally
set as 2 or 3 and the number of users n and services m are
also strictly constrained with relatively small settings in federate
learning scenarios. As a result, the proposed algorithm of ex-
panding the graph user-service multi-order invocations ensures
the highly and efficiently computational loads, preventing the
overall complexity from becoming too large and maintaining
high efficiency for real application demands.

Fig. 3. Multi-layer hybrid feature extraction for users and services.

B. Hybrid Feature Extraction

Fig. 3 outlines multi-layer hybrid feature extraction network,
engineered to distill profound feature representations of users
and services. Starting with the interactive data pertaining to users
and services, it embeds the initial feature representation and
then extract hybrid features of users and services by multi-layer
perceptron and graph residual learning, which are fed to predict
locally missing QoS values.

1) User and Service Embedding: To enhance QoS prediction
accuracy, we incorporate user and service identifiers, along with
their location information (AS and RG), and renumber these
identifiers before mapping them to dense vector representations
using the neural network’s embedding layer.

IDu = Memb(uID) (14)

For AS and RG, since they may contain multiple
users/services, in order to further explore the associated infor-
mation, we utilize Glove word vectors for processing.

ASu =
1

n

n∑
i=0

Glove(wi,AS)

RGu =
1

m

m∑
i=0

Glove(wi,RG) (15)

Where wi,AS and wi,RG represent AS and RG name words,
with n and m being their word counts, and Glove(∗) converts
words into vectors. ASu and RGu are the user embeddings for
AS and RG. Then, we combine the vectors of ID, AS, and RG
to obtain the embedding feature vectors of users and services. It
is represented by the following formula where Φ is the feature
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concatenation operation.

Eu = Φ(IDu, ASu, RGu) = [IDu, ASu, RGu]

Es = Φ(IDs, ASs, RGs) = [IDs, ASs, RGs] (16)

In the graph expansion process, we prioritize user pri-
vacy by ensuring that only locally used feature vectors are
kept private and never shared with neighboring users. In-
stead, anonymous vectors are shared, preventing the leak-
age of sensitive information and reducing privacy risks.
These anonymous vectors enable continuous analysis and
user representation learning, supporting hybrid feature ex-
traction and QoS prediction while maintaining strict privacy
protection.

After graph expansion, the locally expanded graph Gk =
(U ′

k, Sk, Ek, A) obtained by the user ui can be combined with
the embedding vectors to construct an initial graph representa-
tion that can be used for representation learning. Specifically, it
is only necessary to update the attribute function A as in (17),
where ui is the current user, sj is the service included in the
extended graph, and un is the neighbor user of the current user
in the graph.

A =

⎧⎨
⎩
Eu → node if node = ui

Es → node if node = sj
V ′
un

→ node if node = u′
n

(17)

2) Semantic Feature Extraction: Our research design a deep
feature extraction architecture to probe the nonlinear dynamics
between users and services, using their embedding representa-
tions as input. To reveal intricate interaction features, we applied
MLP to process these embeddings.

We feed the embedding vectors of users and services into two
separate MLPs. In each MLP, every layer comprises neurons
that apply a linear transformation to the input data and then
apply the LeakyReLU activation function. The output of each
layer not only provides a high-order representation of the input
data but also serves as input for the next layer, allowing the
model to learn complex patterns and deep features within the
data. Through this layering approach, we can gradually abstract
and refine deep high-dimensional features of users and services,
which may relate to user preferences, service quality, or potential
associations between the two. This process can be represented
as:

Maff (X,σ) = σ(WTX + b)

Su = Maff (· · · (Maff (Eu, σ) · · · ), σ)
Ss = Maff (· · · (Maff (Es, σ) · · · ), σ) (18)

Maff represents the affine layer,σ represents the LeakyReLU
activation function, Eu and Es are the embedding vectors of
users and services, and Su and Ss are the semantic features
vectors of users and services extracted by the MLPs.

LeakyReLU activation function is applied in the hybrid fea-
ture extraction. Different from the traditional ReLU that suffers
from vanishing gradients when the input is less than 0 and
thus hampers model training, it ensures the continuous flow of
gradients during backpropagation by having a small negative
slope for negative inputs, significantly accelerating the model’s
convergence. Meanwhile, when dealing with large-scale data
and complex models in PE-FGL, it reduces resource consump-
tion and speeds up training and feature extraction with efficient

computation. Moreover, its nonlinear property enables captur-
ing the complex relationships between user-service features
effectively, enhancing semantic feature extraction to improve
the accuracy of QoS prediction.

3) High-Order Interaction Feature Extraction: The user-
service invocation graphG effectively delineates user interaction
patterns. Upon a user invoking a service, G adds an edge to
represent this user-service relation, facilitating quick identifica-
tion of similar neighboring user behaviors. Leveraging these
similarities, we introduce a LightGCN-based [34] approach
for efficient feature propagation and aggregation within G ’s
topology.

To more effectively capture the intricate high-order interac-
tions between users and services, we have integrated residual
learning, as proposed by He et al. [35], with nonlinear activation
functions into the LightGCN, thus constructing Graph Residual
Blocks (GRB). The improved graph convolution operation is
defined as follows:

e(k)u = σ

(
e(k−1)
u +

∑
s∈Nu

1√|Nu|
√|Ns|

e(k−1)
s

)

e(k)s = σ

(
e(k−1)
s +

∑
u∈Ns

1√|Ns|
√|Nu|

e(k−1)
u

)
(19)

Where e(k)u and e
(k)
s represent the k-layer embeddings of user

and service nodes, with Nu and Ns as their respective neigh-
boring node sets and σ represents the LeakyReLU activation
function.

Through iterative message propagation, the output of each
layer is added to the output of the preceding layer as input for the
next layer. This model can capture complex interactions between
user nodes and service nodes, and further extract high-order
latent interaction features Gu and Gs. These high-order features
not only contain personalized preferences of users but also
reflect potential associations among services, thereby providing
richer and more accurate information support for user behavior
prediction and service recommendation.

4) Hybrid Feature-Based Local QoS Prediction: The ex-
tracted semantic features and high-order interaction features
are concatenated together for users and services. We then syn-
thesized the user’s initial embedding Eu, semantic feature Su,
and high-order interaction feature Gu into an integrated repre-
sentation Xu. For services, we analogously derived their final
representation Xs. Concatenating Xu and Xs, we input this
composite vector into a neural network to predict the QoS value.
The process is encapsulated by:

Xu = Φ(Eu, Su, Gu) =
[
Eu Su Gu

]
Xs = Φ(Es, Ss, Gs) =

[
Es Ss Gs

]
r̂u,s = σ

(
WT

[
Xu Xs

]
+ b
)

(20)

Here, σ is the nonlinear activation function, W represents the
weight matrix, b is the bias vector, and r̂u,s is the predicted QoS
value.

C. Secure Federated Parameters Aggregation

1) Secured Segmentation and Aggregation of Federated Pa-
rameters: Federated Learning (FL) keeps users’ historical data
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Fig. 4. The process of secure federated parameters aggregation.

on their personal devices, ensuring privacy and reducing risks
associated with centralized data storage. However, research in-
vestigations such as [36] have shown that parameter sharing
in FL can lead to privacy leaks, as attackers may infer sen-
sitive information from shared model parameters. To mitigate
the potential risk, we propose a multi-layer secure federated
parameters segmentation and aggregation strategy, as shown in
Fig. 4, which enhances privacy protection during the collabora-
tive learning of federated parameters.

The secure parameter aggregation process is shown in Al-
gorithm 2. First, users partition and encrypt local parameters
and upload them. Then, intermediate computation units perform
homomorphic addition on parameters of the same partition.
Next, the federated aggregation server aggregates all partitions.
Finally, global parameters are distributed to users for local model
updates. We further formalize these key steps, and the detailed
process is as follows.

Specifically, we devised a parameter segmentation scheme
enhanced by homomorphic encryption [17], which allows com-
putations on encrypted data to yield outcomes equivalent to
those on the original data. The local model parameters Θu of
client u can be conceptualized as a vector in a high-dimensional
space, that is, Θu ∈ Rn. Each element within the vector Θu

corresponds to a specific parameter in the model. To achieve
weighted aggregation, it is first necessary to multiply Θu by the
scalar Tu, thereby obtaining the weighted parameters Θu,T .

Θu,T = TuΘu (21)

For parameters segmentation and encryption, we partition
Θu,T intom segments on an element-wise basis, with θu,j ∈ Rn

denoting the parameters of the j-th segment. Consequently, we
have:

Θu,T =

m∑
i=1

θu,i = θu,1 + θu,2 + · · ·+ θu,m (22)

The aforementioned expression indicates that Θu,T can be
reconstructed by aggregating the m parameter components θu,j
at the element level. Subsequently, each component is subjected

Algorithm 2: Secure Federated Parameters Segmentation
and Aggregation.

to homomorphic encryption as follows:

θ′u,j = EncHE(pk, θu,j) (23)

Where EncHE(pk, ∗) signifies encryption with the public key
pk, the pair pk and sk are the public and private keys distributed
to all users by the key center.

For parameters segmentation and encryption, we establish
m intermediate computing units. Clients transmit their j-th
segment’s ciphertext to the respective node, which executes
additive operations on the ciphertexts directly. Given N clients,
the aggregate ciphertext for the j-th segment, Θ′

j , is:

Θ′
j =

N⊕
i=1

θ′i,j = θ′1,j ⊕ θ′2,j ⊕ . . .⊕ θ′N,j (24)

Intermediate computing units send the ciphertext results Θ
′t
j ,

representing the global parameter sum for the j-th segment, to
the federated aggregation server. It aggregates them to calculate
the overall ciphertext global parameter sum, Θ′

sum.

Θ′
sum =

m⊕
i=1

Θ′
i = Θ′

1 ⊕Θ′
2 ⊕ · · · ⊕Θ′

m (25)

The aggregation server distributes Θ′
sum to all clients, where

they decrypt it using the private key sk and subsequently di-
vide by the global sample count T to obtain the global model
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parameters Θglobal.

Θglobal =
1

T
DecHE(sk,Θ

′
sum) (26)

Where DecHE(sk, ∗) indicates the homomorphic decryption
operation with the private key sk.

In the multi-layer secure federated parameters aggregation,
both the aggregation server and intermediate calculation nodes
process only encrypted parameters, ensuring robust security
against potential server data leakage. Moreover, by employing
parameter segmentation, we prevent attackers from reconstruct-
ing individual client parameters, even in case of encryption
compromise. That significantly enhances privacy protection in
federated learning, particularly for Non-IID data.

2) Time Complexity Analysis: Algorithm 2 comprises four
parts: parameter segmentation and encryption, intermediate
computing unit operation, federated aggregation server oper-
ation, and distribution and local model update. The complexity
of each part and the overall algorithm is analyzed as below.

Parameters Segmentation and Encryption: For user ui, pa-
rameters are divided intom segments, with a time complexity of
O(m). Each segment is encrypted and uploaded, both operations
being O(1).

Intermediate Computing Unit Operation: Each intermediate
computing unit CUj performs homomorphic addition on seg-
ments from N users. Assuming homomorphic addition is O(1),
the complexity for each CUj is O(N).

Federated Aggregation Server Operation: The federated ag-
gregation server gathers results from m intermediate units using
homomorphic addition, assumed to beO(1). Thus, the complex-
ity is O(m).

Distribution and Local Model Update: User ui retrieves and
decrypts the global parameter, which is O(1), and updates the
local model.

Overall Complexity: The total time complexity of the
Algorithm 2 isO(N +m), derived from summing the complex-
ities of the above four individual parts: O(m+N +m+ 1),
which is linear with the number of users and services for secure
federated parameters segmentation and aggregation.

VI. EXPERIMENTS

A. Experimental Setup and Datasets

All our experiments were conducted on a workstation
equipped with an NVIDIA Geforce RTX 4090 GPU and an
Intel Xeon Silver 4210 R CPU @ 2.40GHZ. The components of
PE-FGL were implemented using Python 3.7.15 and PyTorch
1.13.1.

To comprehensively evaluate the performance of the pro-
posed PE-FGL for secure QoS prediction, we conducted ex-
tensive experiments using the widely recognized dataset WS-
DREAM [18]. It is a large-scale real-world dataset for validating
the effectiveness of QoS prediction approaches and comprises
1,974,675 historical QoS invocation records, involving 339 users
and 5,825 web services. These records include two critical QoS
criteria: Response Time (RT) and Throughput (TP). In addition
to QoS records, the dataset encompasses contextual information
like identifiers and geographic locations for users and services.
These contextual informations serves as input for the HFE.

In practical SOA applications, users invoke few services,
leading to a sparse QoS matrix. To simulate this and evaluate

PE-FGL, we created QoS datasets with 5%, 10%, 15%, and 20%
known QoS records for training, reserving the rest for testing. In
a federated setting, each client represents an independent user
and only possesses QoS invocation records between that user and
corresponding invoked web services. It simulates the real-world
data distribution, which is naturally distributed across multiple
clients (users), with each user’s QoS invocations being private.

B. Competing Methods and Evaluation Metrics

To assess the performance of PE-FGL, we compared it with
nine widely-used competing baselines, including two central-
ized memory-based, two centralized model-based, and five fed-
erated learning based approaches. They are described as follows.
� UIPCC [7]: It is a memory-based collaborative filtering

approach that combines user (UPCC) and service (IPCC)
similarities with weighted refinement for better QoS pre-
diction.

� LACF [10]: It is a location-aware collaborative filtering
approach that improves QoS prediction by incorporating
geographical proximities of users and services.

� NMF [5]: It is a QoS prediction approach that decom-
poses user-service matrix into latent non-negative matrices,
leveraging similar users’ information for enhanced predic-
tion in non-negative data scenarios.

� PMF [6]: It is a model-based approach that employs proba-
bilistic matrix factorization with Gaussian-distributed fea-
tures to address data sparsity and improve QoS prediction
accuracy.

� EFMF [14]: It is a federated matrix factorization approach
that enhances QoS prediction via local updates and cen-
tral aggregation, preserving privacy without sharing user-
service QoS records.

� FedNCF: It is a federated learning approach based on
NCF [24] that combines MLP and matrix factorization,
utilizing FedAvg [13] to aggregate client models for dis-
tributed QoS prediction.

� FedLDCF: It is a federated learning approach based on
LDCF [25] that incorporates location-aware feature cor-
rection and MLP for privacy-preserving QoS prediction
with nonlinear user-service relationship modeling.

� FedFSNet: It is a federated learning approach based on
FSNet [27] that employs feature distribution smoothing to
fit Gaussian features and an improved W-Huber loss to
address noise and label imbalance issues.

� FHC-DQP [15]: It is a privacy-preserving approach com-
bines hierarchical clustering and distributed training with
fine-grained partitioning and context-aware learning for
distributed QoS prediction.

In our experiments, we employed two widely used evaluation
metrics, Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE), to measure the deviation between ground-truth
QoS values and the predicted ones. MAE and RMSE are defined
as follows:

MAE =

∑
u,s |ru,s − r̂u,s|

N
(27)

RMSE =

√∑
u,s (ru,s − r̂u,s)

2

N
(28)
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TABLE I
PERFORMANCE COMPARISONS OF QOS PREDICTION AMONG COMPETING METHODS ON RT DATASET

TABLE II
PERFORMANCE COMPARISONS OF QOS PREDICTION AMONG COMPETING METHODS ON TP DATASET

whereu and s represent the given target user and service, respec-
tively. ru,s and r̂u,s are the original and predicted QoS values,
respectively. N is the number of test samples for predicting QoS
values.

C. Experiment Results and Analyses

Tables I and II show comparative performance results of
PE-FGL against centralized and federated baselines for QoS
prediction on RT and TP datasets, where lower MAE and RMSE
values indicate superior predictive accuracy. Bold values denote
the best results, while gray highlights indicate second-best QoS
prediction values. The empirical analysis demonstrates consis-
tent improvement in QoS predictive accuracy as matrix density
increases from 5% to 20%, with an interval step 5%.

In evaluating centralized QoS prediction models, UIPCC
demonstrated inferior MAE and RMSE indices, chiefly due
to its dependence on sparse QoS records, making it vulnera-
ble to data deficiency. Conversely, LACF improved predictive
accuracy by incorporating geographic information as a sup-
plementary heuristic for neighborhood selection. Additionally,
matrix factorization methods like NMF and PMF surpassed
traditional memory-based models by uncovering more profound
user-service correlations and interaction patterns, offering en-
hanced robustness and precision in QoS prediction.

In federated QoS prediction, distributed matrix factorization-
based EFMF exhibits inferior performance compared to cen-
tralized approaches like NMF and PMF, corroborating existing
findings [37] that centralized learning better captures intrinsic
data patterns through global dataset access. Subsequent feder-
ated models have received progressive improvements. Specifi-
cally, FedNCF leverages MLP to model nonlinear user-service
relationships, addressing data sparsity challenges. FedLDCF
incorporates geographic contextual information to enhance fea-
ture representation. FHC-DQP employs federated hierarchical
clustering for refined user segmentation. FedFSNet takes feature
distribution smoothing and W-Huber loss into account to mit-
igate noise and label imbalance, culminating in superior QoS
prediction performance.

Unlike the above competing approaches, PE-FGL integrates
a graph expansion mechanism, context-aware deep neural net-
work, and graph residual learning to capture complex nonlinear
user-service interactions. From the results, it demonstrates supe-
rior performance, achieving MAE reductions of approximately
9% and 13% on RT and TP datasets, respectively. While PE-FGL
outperforms competitors in terms of RMSE on TP dataset by
12%, it slightly falls short of centralized NMF and PMF at 15%
and 20% matrix densities on RT dataset. This disparity likely
stems from centralized models’ enhanced capabilities of col-
laborative pattern detection in dense QoS matrices, highlighting
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TABLE III
ABLATION STUDY RESULTS ON RT DATASET

TABLE IV
ABLATION STUDY RESULTS ON TP DATASET

an inherent disadvantage of federated approaches in predicting
vacant QoS with dense user-service invocations.

In our research, we developed a hybrid feature extraction
network that contribute significantly to QoS prediction. To rig-
orously dissect the significance of each constituent in HFE, we
conducted a suite of ablation studies. HFE comprises two princi-
pal elements: Semantic Feature Extraction (SFE) component and
Graph Residual Learning (GRL) component. Specifically, we
constituted four experimental groups to evaluate the influence:
� PE-FGL-SG group: As a baseline, this group only includes

the input and prediction layers of the PE-FGL method
without integrating any parts of the HFE network.

� PE-FGL-S group: Only utilizes GNNs to explore the high-
order potential latent interaction features between users
and services, thus examining the contribution of the GRL
module independently.

� PE-FGL-G group: Focus on exploiting deep learning tech-
niques for semantic feature extraction of user-services to
evaluate the effect of SFE.

� PE-FGL group: Represents the complete PE-FGL method,
combining both the SFE and GRL to provide a comprehen-
sive feature extraction network.

We conducted comprehensive ablation studies of PE-FGL
utilizing datasets with varying matrix densities (5%, 10%, 15%,
and 20%), with the remaining data allocated for testing. The
experimental results, presented in Tables III and IV, demonstrate
the superior performance of the PE-FGL model across both RT
and TP datasets. It is observed that, PE-FGL exhibits signifi-
cant improvements over the its variant PEFGL-SG, achieving
20%-32% enhancement on RT and 32%-40% on TP datasets,
respectively.

Component-wise analysis reveals dataset-specific perfor-
mance variations. On RT, PE-FGL demonstrated improvements
of 13%−23% over PE-FGL-S and 8%−19% over PE-FGL-
G. Similarly for TP, gains of 27%−33% and 13%−21%
were observed compared to PE-FGL-S and PE-FGL-G, respec-
tively. Notably, PE-FGL-G consistently outperformed PE-FGL-
S across both datasets.

The outstanding QoS prediction performance of PE-FGL
stems from the synergistic integration of SFE and GRL within
the HFE framework. Here, SFE facilitates deep mining of non-
linear relationships and extraction of rich semantic features from
user-service interactions. These semantic embeddings further
enhance GRL’s capacity to focus on key high-order interaction
patterns, while minimizing irrelevant information interference.

The ablation results indicate that the absence of SFE (PE-
FGL-S) or GRL (PE-FGL-G) significantly impacts model per-
formance. Without SFE, the model exhibits increased suscepti-
bility to noise during high-order feature extraction. Conversely,
the absence of GRL limits the utilization of semantic guidance
for interaction pattern identification. These findings emphasize
that the integration of both modules is crucial for improving QoS
prediction accuracy in practical applications.

D. Performance Impact of Parameters

1) Impact of Clients Selection Rate: In practical deployment
of PE-FGL, due to the large number and variability of client
environments, only a subset of clients is randomly selected to
participate in each training iteration. The client selection rate
F , defined as the percentage of clients selected for training in
a given round, significantly influences QoS prediction perfor-
mance. To investigate the impact of F on model performance,
experiments were conducted using RT and TP datasets with
matrix densities of 5%, 10%, 15%, and 20%, and six selection
rates: 3%, 5%, 10%, 30%, 50%, and 100%. The number of
clients participating in each training round is the product of the
total number of clients and F ; for example, F = 100% means
all clients participate in that round.

Fig. 5 illustrates the variations in QoS prediction performance
across different selection rates F . The model achieves the best
MAE and RMSE at F=10%, likely due to a balance between
data diversity and noise. That is, lowerF values may reduce data
diversity, hindering the generalization of PE-FGL. Oppositely,
higher F values can introduce excessive noise, leading to model
overfitting and reducing the accuracy of QoS prediction. At
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Fig. 5. Performance impact of clients selection rate.

Fig. 6. Performance impact of graph expansion step.

F=10%, the model maintains sufficient diversity to generalize
well without being overwhelmed by noise.

2) Impact of Graph Expansion Step: In the graph expansion
module, local users gather neighboring users’ invocation records
to enhance their local prediction model training, improving
QoS prediction accuracy. A user’s service invocation graph is
represented as a first-order subgraph centered on them in the
global graph. The graph expansion step k is defined as the
distance from a node in the global graph to the corresponding
first-order subgraph. Experiments are conducted on RT and TP
datasets with matrix densities of 5%, 10%, 15%, and 20%,
using k values of 0, 1, 2, and 3, where k=0 indicates first-order
subgraph without any graph expansion.

Fig. 6 reveals a clear correlation between prediction accuracy
(MAE/RMSE) and the expansion factor k, with performance
peaking at k = 1 through moderate graph expansion and de-
clining progressively as k exceeds this threshold. The poorest
results at k = 0 underscore the necessity of graph expansion,
while over-expansion (e.g.,k = 4) introduces excessive privacy-
preserving noise from anonymized vectors, degrading accuracy
below lower k values (e.g., k = 3). These findings highlight the
critical trade-off between data integration depth and privacy-
induced noise in maintaining optimal model performance.

VII. DISCUSSION

A. The Practical Significance of PE-FGL

In real-world scenarios, users’ QoS invocation records are
naturally distributed across local devices, with each user’s data
being small in scale and highly personalized. To train a widely
applicable and accurate QoS prediction model while safeguard-
ing user privacy, we propose the privacy-conscious PE-FGL
prediction model, which struggles to address key challenges
for both improving QoS prediction accuracy and ensuring the
guarantee of the privacy protection.

First, PE-FGL expands the user-service invocation graph
using advanced privacy-preserving techniques. During the first-
order graph encryption stage, user identities and services are
anonymized and encrypted using secure hash algorithms [33]
and AES encryption [16]. It ensures strict privacy protection
during graph expansion, preventing data leakage during trans-
mission and storage. The server assembles the global encrypted
graph without decryption, further enhancing the privacy of users
and services. In the adaptive graph distribution stage, the server
adaptively constructs extended high-order invocation graphs,
allowing users access only to necessary information while re-
stricting access to feature vectors of adjacent nodes, thereby
protecting tthe privacy of users and services and also improving
the effectiveness of hybrid feature extraction for better QoS
prediction accuracy.

Second, PE-FGL employs a secure federated parameters
aggregation strategy based on homomorphic encryption [17].
Clients encrypt segmented local model parameters before up-
loading while both intermediate nodes and the server process
only encrypted model parameters. It ensures the security of local
model parameters during transmission and aggregation, prevent-
ing attackers from recovering the original parameters. Thus,
PE-FGL further guarantees the privacy of model parameters
during model training when multiple user clients collaboratively
learn better local QoS prediction models.

From the above analyses on PE-FGL, existing QoS pre-
diction approaches often fail to adequately protect user pri-
vacy. Traditional centralized approaches, such as NMF [5] and
PMF [6], require collecting all users’ QoS records, exposing
sensitive information during similarity calculation and model
training. Federated learning-based approaches like EFMF [14]
and FHC-DQP [15] provide limited privacy protection by re-
lying on simple encryption or plaintext parameter aggregation,
which leaves shared parameters vulnerable to be attacked in
real applications. Additionally, they overlook the high-order
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topological relationships between users and services, reducing
QoS prediction accuracy due to lack of training samples for local
model parameters optimization. PE-FGL addresses these limi-
tations by integrating advanced privacy-preserving techniques
and user-service invocation graph expansion.

B. Optimizing Federated Parameter Aggregation

In federated QoS prediction, geographically distributed users
face challenges when collaboratively learning QoS patterns.
Network latency between distributed users not only hinders
timely model updates but also affects the accuracy of QoS mea-
surements. This leads to sparse user-service interaction data and
degraded prediction performance. Moreover, the large volume
of encrypted model parameters and user behavior data imposes
substantial privacy protection overhead.

To address these issues, we first design multi-layer network
architecture by introducing edge computing and deploying in-
termediate nodes near clients that can reduce transmission dis-
tances and network latency. For example, regional edge nodes
can perform local QoS model parameters aggregation, minimiz-
ing communication with central servers. Then, adopting hier-
archical parameter aggregation and decentralized collaboration
can further enhance the efficiency of globally calculating those
aggregated local model parameters. Specifically, regional nodes
aggregate local parameters and generate compact results, and
they collaborate via secure protocols to produce the final global
model, reducing data volume and computational load for secure
federated parameters aggregation.

VIII. CONCLUSION

In this paper, we propose a novel framework of Privacy-
Enhanced Federated expanded Graph Learning(PE-FGL),
which is dedicated to both protecting user privacy and improv-
ing the effectiveness of QoS prediction. Initially, we design a
privacy-preserving graph expansion mechanism that is capable
of augmenting each user’s one-order local QoS invocations into
an expanded user-service invocation graph, reflecting high-order
invocation relationships. Based on the expanded graph, we then
present hybrid feature extraction by leveraging deep learning and
graph residual learning, capturing semantic features and high-
order interaction features of users and services, respectively.
Finally, we design a multi-granularity secure federated parame-
ters aggregation, which takes local parameters segmentation en-
cryption and multi-layer parameters aggregation for effectively
secure QoS prediction. Experimental results on WSDREAM
dataset demonstrate the superior QoS prediction performance,
while ensuring its protection of user privacy.

In the future, we plan to explore more personalized training
strategies with the aim of optimizing QoS prediction perfor-
mance and further enhancing the capability of user privacy
protection.
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