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Multi-view clustering aims to discover inherent data structure by leveraging complementary perspectives of graph
data. Although deep subspace clustering methods have achieved impressive performance, they usually construct
the self-expression matrix using only the final embedding. This approach may overlook multi-scale information
embedded across network layers and consistency between subspace representations and clustering labels. To
address these limitations, we propose MvCDSC, an effective contrastive deep subspace clustering framework for
multi-view graph-structured data. MvCDSC integrates view-specific and shared graph autoencoders to capture
view-specific intricacies while learning cross-view shared representations. Its key innovations include two as-
pects. First, a multi-scale consistency mechanism aligns self-expression matrices across shallow and deep layers
through layer-wise constraints. This captures multi-scale information and enriches the construction of represen-
tations. Second, an improved contrastive learning strategy is applied directly to the self-expression coefficient
matrices. By redefining positive, false-negative, and negative pairs using pseudo-labels, this strategy effectively
bridges semantic gaps across multiple views. Extensive experimental results demonstrate that MvCDSC outper-
forms state-of-the-art methods in node clustering tasks. The source code of the proposed MvCDSC is available at

https://github.com/DHUDBlab/MvCDSC.

1. Introduction

Graph-structured data delineates intricate relationships among en-
tities through nodes, edges, and attributes, playing significant roles in
various domains of data analysis, such as citation networks and drug-
drug interactions (Gan et al., 2023). Node clustering segregates graph
nodes into distinct groups, aiming to maximize intra-cluster similar-
ity and minimize inter-cluster similarity (Wang et al., 2019a). Previ-
ous clustering methods primarily focus on single-view data. However,
real-world objects are often represented in multiple forms. Compared to
single-view data, multi-view data provides richer information that can
further refine clustering results. Nonetheless, multi-view clustering faces
challenges such as significant modality gaps, dimensional disparities in
node features, and diverse relation types, complicating view integration
and multi-view clustering.

To date, a variety of multi-view clustering (MVC) methods have been
proposed (Fang et al., 2023). Graph-based MVC methods (Lin & Kang,
2021; Pan & Kang, 2021; Wang et al., 2019b) seek to construct a con-
sensus similarity graph by fusing or weighted approximating multiple
similarity graphs, and then utilize graph-cut algorithms to obtain the
clustering assignments. Matrix factorization-based MVC methods (Liu
et al., 2013) decompose the data representation of each view into a ba-
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sis matrix and a coefficient matrix, then implement constraints to derive
the final coefficient matrix. Collaborative training-based MVC methods
(Xu et al., 2021) iteratively select a view as the reference to guide the
learning of other views, achieving impressive clustering performance
through mutual learning between views. Kernel-based methods (Sun
et al., 2021) construct a set of base kernels and a consensus kernel to
process non-linear data, thus avoiding pre-defined problems. Although
these traditional shallow models have achieved significant success, they
also encounter difficulties in revealing nonlinear data relations and pro-
cessing high-dimensional data. Recently, deep model-based MVC meth-
ods have garnered significant attention attributed to their remarkable
learning capabilities. Particularly, based on the assumption that a data
point can be expressed as a linear combination of other points in the
same cluster, deep subspace clustering (DSC) (Cheng et al., 2022; Lele
et al., 2022; Xia et al., 2021; Zhu et al., 2019) inserts a self-expression
layer between the encoder and decoder to construct an affinity ma-
trix for spectral clustering. The linear combination is captured by the
self-expression coefficient matrices. This self-expression property is the
core idea of subspace clustering. Observing that only utilizing the rep-
resentation of the deepest hidden encoder layer for clustering might
waste useful information embedded in other layers, Wang et al. (2021a)
consequently constructed self-expression layers at each encoder layer,
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enriching the self-expression coefficient matrix with multi-scale infor-
mation. While deep subspace clustering methods have achieved impres-
sive performance, they often construct the self-expression matrix based
only on the final embedding. This critical omission ignores the multi-
scale information embedded in different layers, leading to potentially
sparse or incomplete coefficient matrices, and disregards the necessary
consistency between the learned subspace representations and the final
clustering labels (ABUD-ALLAH, 2024).

To make multiple clustering assignments consistent across different
views (Xu et al., 2021), contrastive learning (Chen et al., 2020; He et al.,
2020) has recently been adopted to enhance multi-view consistency. In
traditional contrastive learning, the representations of the same node in
different views forms a positive pair, while different nodes form nega-
tive pairs (Liu et al., 2022; You et al., 2020). Through node embedding,
positive pairs are pulled closer and negative pairs are pushed away in the
embedding space. This strategy lead to some similar samples from the
same category being incorrectly classified as negative samples, which is
not conducive to the downstream clustering task (Wang et al., 2017).
Xia et al. (2022) proposed self-consistent contrastive learning, which
redefined positive and negative pairs by introducing pseudo labels. In
two views, for a node, it forms positive pairs with nodes with the same
pseudo label, while forming negative pairs with the remaining nodes.
However, pulling closer the node representations in different views is
actually difficult because of large heterogeneous gap and semantic in-
formation difference. To alleviate the heterogeneity and promote better
alignment of node representations, a shared auto-encoder is used to map
node representations from different views into a common latent space.
Yet another problem remains unsolved. Considering the semantic con-
sistency that comes with self-expression coefficient matrices of different
views, self-expression coefficient matrices might be more suitable for
contrastive learning. On the other hand, since each view offers unique
perspectives on the object, the integration of multiple views can enrich
the clustering process with complementary information. For multi-view
data, the fusion of information obtained from each view is a way to
leverage complementarity. Cao et al. (2015) proposed an HSIC term to
promote the diversity of subspace representations from different views,
in order to further enhance the effect of complementarity. Achieving a
balance between consistency and complementarity is still a challenging
task now.

To address the aforementioned challenges, we propose a multi-view
contrastive deep subspace clustering method (MvCDSC) for attributed
graph. MvCDSC consists of multiple independent graph auto-encoders
and a shared graph auto-encoder. Each auto-encoder is incorporated a
self-expression layer to derive the self-expression coefficient matrix. No-
tably, we introduce an effective contrastive learning strategy specifically
for deep subspace clustering, which redefines positive, false negative,
negative samples according to pseudo labels obtained from clustering
to promote semantic consistency across self-expression coefficient ma-
trices of different views. With the shared auto-encoder and contrastive
learning, our approach facilitates effective view fusion. Furthermore, to
take advantage of multi-scale information, we minimize the disparity
between the view-specific self-expression coefficient matrices and the
fused one. This strategy not only ensures consistency in the decision
space but also enhances the mutual complementarity between matrices
corresponding to both shallow and deep topologies.

In summary, the major contributions of this paper are summarized
as follow:

e We propose MvCDSC, an effective contrastive deep subspace cluster-
ing framework designed for multi-view graph-structured data. The
framework employs view-specific graph autoencoders along with a
shared graph autoencoder to capture the intricacies of each view
while exploring shared information across views.

¢ We propose a new contrastive learning strategy that redefines posi-
tive, false negative, and negative pairs based on pseudo labels. This
strategy is compatible with the self-expression coefficient matrix
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learning, effectively addressing the problems of heterogeneous and
semantic gaps of multiple views.

e We respectively construct the self-expression coefficient matrices
corresponding to shallow and deep graph convolution layers and en-
sure multi-scale information consistency.

e Extensive experiments on graph-structured datasets demonstrate
that our proposed method outperforms state-of-the-art single-view
and multi-view clustering methods. This end-to-end framework is
applicable to two kinds of multi-view graph-structured datasets and
demonstrates robust generalization.

2. Related work
2.1. Contrastive learning

Attributed to the unsupervised learning capability, contrastive learn-
ing has gained great attention in computer vision field (Chen et al., 2020;
He et al., 2020). It aims to maximize mutual information by bringing
positive pairs closer while simultaneously pushing away negative pairs
in the embedding space. Several studies have introduced contrastive
learning into graph learning. For example, GRACE (Zhu et al., 2020)
leverages graph corruption techniques at both structural and attribute
levels to generate two distinct graph views. Subsequently, node-level
contrastive learning and the InfoNCE loss are applied to both views. Sim-
ilarly, GraphCL (You et al., 2020) conducts graph-level contrast by sum-
marizing graph representation through the readout function. Moreover,
mutual information maximization can be performed at different scales.
For instance, DGI (Velickovic et al., 2019) maximizes mutual informa-
tion between node representations and a summary vector that captures
global information of the entire graph. In GMI (Peng et al., 2020), each
node incorporates node features and adjacency information of k-hop
neighbors as its sub-graph, then maximizes mutual information between
its node representation and the sub-graph. GCL4SR (Zhang et al., 2022)
is a graph contrastive learning method for sequential recommendation,
leveraging a Weighted Item Transition Graph (WITG) to capture global
item transition patterns. It enhances sequence representations by align-
ing local and global contexts through subgraph-based contrastive learn-
ing and multi-scale consistency objectives. AdaGCL (Jiang et al., 2023)
is a self-supervised contrastive learning framework for recommendation
systems, which introduces adaptive view generators (a graph genera-
tor and a denoising model)to dynamically create contrastive views. It
addresses data sparsity and noise by generating task-aware augmenta-
tions and mitigating model collapse through adversarial training. UM-
CGL (Du et al., 2024) is a multi-view consensus graph learning frame-
work that considers both original and generative graphs to balance con-
sistency and diversity. SMGCL (Zhou et al., 2023) constructs (node, sub-
graph) data pairs and (node, node) data pairs for contrast. However,
contrastive learning usually ignores the category of the node, leading to
some true positive pairs being mistakenly considered as negative pairs.
Consequently, SCAGC (Xia et al., 2022) introduces a two-layer fully con-
nected network on the Siamese network to obtain clustering labels, then
refine contrastive learning. Similarly, CAGC (Wang et al., 2017) selects
k-nearest neighbors in the latent space as positive pairs for each node,
with the remaining nodes serve as negative pairs. PGCL-DCL (Hu et al.,
2024) learns discriminative multi-view features and satisfactory clus-
tering result by pseudo-label guided CL and dual correlation learning.
MFCGC (Yang et al., 2024) employs a pseudo-label selection method to
construct reliable positive and negative pairs.

2.2. Deep multi-view clustering

Deep learning models boost the development of multi-view clus-
tering, facilitating the modeling of inter-view relations and the learn-
ing of latent representations. Utilizing a heuristic metric of modularity,
02MAC (Fan et al., 2020) selects the most informative view among mul-
tiple views to perform encoding, decoding, and self-training clustering.



Y. Gan et al. Expert Systems With Applications 307 (2026) 130921
xX® g
HD W g
""" —_— —_— g Restruction
BT O 8
avg 7 FO) . .
[ . Multi-scale Information 1
HHH o, Comsisthey FOCD. ) Restucton
— [T .0
m =z
o
3 g
8 c.,® g-
(] ®
=22 :
F2)
’ - » Restruction
11 Multi-scale Information —_
\ Consistency
(2)
) H® C
X o
A g
— — s g_ Restruction
O | EEE Z
“

Fig. 1. The framework of the proposed method MvCDSC. MvCDSC consists of two main modules, including feature embedding module and self-expression matrix
learning module. Multi-view graph data are first encoded by view-specific graph autoencoders to produce view-specific latent representations. These are then fed
into a shared graph autoencoder to learn a common subspace. Self-expression layers are applied at multiple levels to generate coefficient matrices. A contrastive loss
aligns cross-view self-expression matrices using pseudo-labels, while a multi-scale consistency loss regularizes shallow and deep matrices. The final fused coefficient

matrix is used for spectral clustering.

Despite focusing on the most informative view, valuable information
inherent in other views remains overlooked. SGCMC (Xia et al., 2021)
introduces a new view construction method, and subsequently learns
the view-consensus coefficient representation to facilitate spectral clus-
tering, leveraging shared graph auto-encoder and geometric relation-
ship similarity. A2AE (Sun et al., 2022) integrates the node representa-
tion of each view into a final representation using an attention mech-
anism. CMGEC (Wang et al., 2021b) and DFP-GNN (Xiao et al., 2023)
integrate the adjacency matrix of each view into a consensus graph to
incorporate complementary information. To tackle the issue of unbal-
anced feature dimensions, UMDL (Xu et al., 2023) constructs an over-
complete dictionary and utilizes a combination of atoms to transform
the original data. However, these methods neglect to address the con-
sistency between views, and the instability in model training caused by
the attention mechanism. MvDSCN (Zhu et al., 2019) and SCMC (Lele
et al., 2022) consider both consistency and complementarity. MGCCN
(Liuetal., 2022) and DCMSC (Cheng et al., 2022) extend node-level con-
trastive learning to node representation, subspace representation, and
high-order semantic representation.

3. Proposed method

MvCDSC is a new contrastive deep subspace clustering framework
specifically designed for multi-view graph-structured data. As illustrated
in Fig. 1, it consists of several main modules, including feature embed-
ding module and self-expression matrix learning module. Specifically,
feature embedding module introduces graph auto-encoder to map node
attribute and adjacency matrix into a low-dimensional latent space,
which is used for downstream node clustering task. Self-expression
learning module consists of two parts, which introduce the improved
contrastive learning and multi-scale information consistency minutely.
The details will be elaborated in the following sections.

3.1. Notations

An undirected attribute graph is represented as G = (N,, E, X),
where N, is the nodes set, E is the edge set, and X =
{x1.%p,....x,} € R™d is the node attribute matrix. d is the di-
mension of node feature, n is the number of nodes, and x; € RY
corresponds to the feature vector of node i. A € R™" is the adjacency
matrix describing the connectivity among nodes. A;; = 1 if (v;,v;) € E,
otherwise 4;; = 0.

For multi-view graph-structured data, it can be divided into two
categories. One type is based on multi-attribute data, composed of
multiple node attribute matrices and a common adjacency matrix,
ie. X={X® ¢ R"Xd(v)}b’:], A € R™". The other type is based on
multi-layer data (Liu et al., 2022), composed of a node attribute matrix
and multiple adjacency matrices, i.e. X € R™?, A = {4V € [R"X"}L’:l.
V represents the number of views, d*) represents the dimension of
node features in vth view. Multi-view graph clustering divides the n
unlabeled nodes into k disjoint clusters by leveraging data collected
from different sources or modalities, aiming to discover the underlying
data structure.

3.2. Feature embedding module

In order to embed the node attributes and the relationship among
nodes into a low-dimensional latent space, the feature embedding mod-
ule introduces two types of graph auto-encoder, including view-specific
and shared graph auto-encoder. View-specific graph auto-encoders are
used separately for each view to unify the dimensions. The learned node
representations and adjacency matrices are further fed into the shared
graph auto-encoder. Then all nodes are embedded into a common la-
tent space, facilitating subsequent fusion and contrastive learning. For
the graph auto-encoder, similar to GATE (Salehi & Davulcu, 2019), we
utilize the attention mechanism on GAE to discern the importance of
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connections between nodes and their neighbors.
Encoder: Receiving the node attribute matrix X and adjacency ma-
trix A as input, the encoder functions with L layers.
As the output of the /th layer, the representation of node i can be
formulated as:
W) =3 alo(hl~"w®) @
JEN;

1
eXP(e/(- j))

G = 2)
ZkeN, exP(efk))
o) = sigmoid(a(h{~ "W ! + o(h|"VW D)) 3
where hﬁ’) is ith row of node representation matrix H®,
w® e RA“Ixd0 00 e Rd¥ are the trainable parameters of
the /th encoder layer. N; represents the neighbors of node i. af;)
represents the relevance of a neighboring node j to node i. H® = X,
HWD ¢ pxd® g « g, FU) is the output of the Lth encoder layer,
which is chosen as the final representation of nodes. The encoding
process reduces dimensionality and eliminates redundant information.
Decoder: We use a symmetric decoder to reconstruct the node at-
tribute matrix X. Decoder takes node representation A = HL)C as
input. The decoder utilizes previously calculated parameters W) and
as) to reverse the encoding process, the node representation in the /th
decoder layer can be formulated as:
2 (-1 D _ 40 T
W= 3 oW @
Jjen;
where /") is the ith row of A, X = A is the output of the last layer.
We respectively adopt two kinds of reconstructions to verify the qual-
ity of node representations. First, the node attribute reconstruction loss
is defined as:

LAR=||X_)2||%: %)

Meanwhile, to ensure that the representations of neighboring nodes
are similar, the graph structure reconstruction loss is defined as:

< 1
Lqp=— Z Z / e — 6
GR 0g<1 +exp(—h,~th)> ©

i=1 jEN;
The total reconstruction loss in this module can be formulated as:
2V n

Le=Y ||X(”>—X’(”>||2F—%Z Y log —L )]

. @7
v=1 i=1 jEN; 1+€_h’ hi

where XV+D = g, . x@) = g0, go+h = pO)  H@) = FO),
1, is a trade-off parameter. H") and F“) respectively represent outputs
of view-specific encoders and shared encoder for view v.

3.3. Self-expression matrix learning module

Before entering the decoder, HY) will pass through the self-
expression layer which is a fully connected layer devoid of activation
functions and biases. The objective of this layer is to construct a linear
combination expressed by other nodes. C € R™" is a self-expression co-
efficient matrix and a trainable weighted parameter of self-expression
layer, C;; measures the affinity between the ith node and the jth node.
The self-expression layer is equipped for all graph auto-encoders. To
optimize CV, the self-expression loss is calculated as:

2
Le=3 D ®)
o=

where CV+D =, W, ..., c@) =,V y is always set to 10. C and
C, are self-expression coefficient matrices generated by view-specific
auto-encoders and shared auto-encoder. To prevent the trivial solution
C® = I, we impose the constraint C,.(I.”) = 0. Additionally, ||C?||, serves
as a sparsity penalty term, with p being set to 1.
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3.3.1. Improved contrastive learning

While contrastive learning was initially developed for augmented
views of single-modality data, recent advances have extended its prin-
ciples to multi-view scenarios. Its goal is to learn representations across
heterogeneous but semantically aligned views. In such frameworks, con-
trastive objectives are used to maximize mutual information between
different views of the same instance, even when the views are not gen-
erated via augmentation. Our work builds upon this generalized view
of contrastive learning, treating each graph view as a distinct modal-
ity of the same underlying structure. In traditional contrastive learning,
positive pairs are constructed via data augmentation. In our multi-view
setting, positive pairs are formed by linking different views of the same
node. Although these views are not augmented copies, they share a com-
mon semantic identity-the node itself. Under the assumption that all
views describe the same set of nodes, maximizing agreement between
cross-view representations of the same node is equivalent to maximizing
the mutual information across views.

Each row of the self-expression coefficient matrices represents a
low-dimensional subspace representation of a node, encapsulating its
affinities with other nodes. Despite being in different views, this innate
semantic consistency is a huge advantage partnered with a shared auto-
encoder to reduce heterogeneous gap. According to traditional con-
trastive learning, as shown in Fig. 2(a), the subspace representation of
a node i serves as the anchor, while those of node i in other views are
treated as positive samples, and the subspace representations of other
nodes across views are considered negative samples. There are v — 1 pos-
itive pairs and v(n — 1) negative pairs with the anchor. The objective is
to minimize the distance between positive pairs and maximize the dis-
tance between negative pairs in the latent space. In general, nodes of
the same class are expected to have similar linear combinations. This
approach is not suitable when nodes of the same class as node i are
mistakenly considered as negative samples and pushed away. Differ-
ently, for self-consistent contrastive learning (Xia et al., 2022), nodes
with the same pseudo label as node i are also considered to be positive
samples (Fig. 2(b)). However, due to the linear assumption of DSC, this
inference is not necessarily valid for self-expression coefficient matri-
ces, which prohibits nodes from self-representation. With the sparsity
of graph-structured datasets, nodes belonging to the same class may ex-
hibit dissimilar subspace representations. It is not appropriate to bring
them closer. Self-consistent methods treats all same-label nodes as pos-
itives may force structurally inconsistent representations to align, vio-
lating the sparsity and self-expressiveness assumptions of DSC.

Therefore, as shown in Fig. 2(c), we propose a new contrastive learn-
ing strategy for DSC. Our strategy treats cross-view representations of
the same node as positive pairs, while treating same-label but different-
node representations as false negatives, allowing them to evolve nat-
urally during training. This design avoids over-constraining the opti-
mization and respects the inherent sparsity of subspace representations.
Specifically, in the framework of a shared auto-encoder mapping a self-
expression coefficient matrix across multiple views, nodes with the same
index as node i are considered positive samples, those with the same
pseudo label as node i are regarded as false negative samples, and the
rest are treated as negative samples. These categories form positive, false
negative and negative pairs with node i, with the objective of bringing
positive pairs closer and distancing negative pairs, while do nothing
with false negative pairs and let them update themselves during the
learning process.

Here, spectral clustering provides pseudo labels to filtering out false
negatives. Accordingly, similar to Xiao et al. (2023), we adopt a two-
stage pre-training process. Initially, view-specific auto-encoders are pre-
trained, followed by the shared auto-encoder. During formal training,
these two types of auto-encoders employ distinct learning rates for
back propagation, facilitating the preservation of clustering accuracy.
As pseudo labels in two successive epochs might not be consistent, up-
dating too quickly might lead to unstable model optimization. We take
an interval T to update the pseudo labels, the value of T ranges from {5,
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(a) (b)

()

Fig. 2. Three types of contrastive learning. (a) traditional contrastive learning (b) self-consistent contrastive learning (c) the proposed self-expression contrastive
learning. The red arrow means pushing away, the green arrow means pulling closer and the black arrow means neither pushing away nor pulling closer.

10, 15, 20}. We take two views as an example, the contrastive learning
loss is calculated as:

(@) () im(C@ B
f(CI-,Cj)=eSIm(Ci ,Cj )/T+es1m(CI A,Cj )/t (9)

esim(cj"),q.‘”’)/f

1 n
Lcon =_% Z ZIOg (10)

;i (@) ~(B)
R S D

where C; represent the ith row of the self-expression coefficient matrix,
v; is the set of nodes that have different pseudo labels as i, 7 denotes a
temperature parameter, we set ¢ = 1, « and f represents different views,
sim(C,, C;) = CI'C,/IIG G, II.

Finally, we combine the self-expression coefficient matrices by a set
of weight coefficients for complementarity:
Cfinal = 211;;1 157)C;U) s.t. ZL/:l ﬂz(j) =1, ﬁgj) > 0.

Then the affinity matrix /\ can be calculated by A = %(lei,,,,ll +
|C;iml |). Subsequently, spectral clustering can be applied to this matrix
to derive the clustering results.

3.3.2. Multi-scale information consistency

Since the self-expression coefficient matrices derived from differ-
ent layers represent distinct levels of feature representation, therefore
a multi-scale consistency is introduced to address the critical problem:
the potential inconsistency between the local structural information cap-
tured by shallow layers and the global semantic information captured by
deep layers. By regularizing the alignment of these matrices, the model
is forced to reconcile these two levels of information. This ensures that
the learned representation is not only semantically meaningful but also
structurally sound, which is crucial for a more stable and accurate final
clustering result. To minimize the difference between self-expression co-
efficient matrices, the self-expression consistency loss L,, is calculated
as:

v
Ly = 2\ 11Csina = CII% an
v=1

Besides, L,, serves as a coordination mechanism for integrating
multi-scale information within the model. It encompasses not only the
final layer of the shared encoder but also the intermediate layers of
view-specific encoders throughout the model’s data flow. Specifically,
the coefficients C® and C” are from distinct graph convolution lay-
ers. Shallow graph convolutions facilitate nodes in prioritizing neigh-
boring nodes, whereas deep graph convolutions allow nodes to incorpo-
rate information from a broader spectrum of nodes. Through Eq. (11)],
the self-expression coefficient matrices corresponding to shallow and

deep topologies mutually complement each other. Consequently, the en-
coders are optimized towards achieving a refined self-expression coeffi-
cient matrix.

3.4. Overall loss function

To facilitate the end-to-end training, the total loss function of
MvCDSC is formulated as:

L= min L+ Ly +iLeg+ ALy (12)

where W = (WO, W@ w®} and v, = (07,0, ..., o8P, uP) are
training parameters of graph auto-encoder, C represents self-expression
coefficient matrices, including those of the shared graph auto-encoder
and the graph auto-encoder of each view. 4, and 4, are trade-off param-
eters. These modules are jointly trained in an end-to-end manner using
the Adam algorithm (Kingma & Ba, 2014) with gradient clipping. The
general procedure of MvCDSC are summarized in Algorithm 1.

4. Experiment

Having defined the architecture, the multi-scale consistency objec-
tive, and the contrastive loss function, this section will test the hypoth-
esis that the fusion of multi-scale coefficient alignment and structure-
guided contrastive learning improves clustering performance compared
to state-of-the-art methods, particularly on complex attributed graph
datasets.

4.1. Experiment setting

(1) Benchmark Dataset: We first evaluate the performance of
our clustering approach on two types of graph-structured multi-view
datasets, including multi-attribute and multi-layer datasets. For multi-
attribute datasets, we choose three real-world datasets from diverse
domains, including Cora, Citeseer, and Wiki (Yang et al., 2015). Cora
and Citeseer represent citation networks, where nodes and edges sig-
nify publications and citations, respectively. The node attributes are
presented as bag-of-words of keywords. Wiki represents a webpage net-
work, where nodes and edges denote webpages and hyperlinks, respec-
tively, and node attributes are described by TF-IDF weighted vectors. For
the datasets initially containing only one attribute, we construct a sec-
ond attribute through the Cartesian product of X x X7, where the orig-
inal attribute and the transformed attribute share the same adjacency
matrix. For multi-layer datasets, we choose two widely used datasets:
ACM and IMDB (Sun et al., 2022), both with one attribute. ACM de-
lineates a paper network with two types of relationships: co-paper and
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Algorithm 1 The general procedure of MvCDSC.

Input: Node attribute matrices XV, ..., X, adjacency matri-
ces AV, ..., AV, hyper-parameters 4,, 4,, pre-training learn-
ing rate, formal training learning rate, maximum number
of iterations T),,;, Ty, Tforma» the dimension of graph auto-

encoder, interval T, cluster number k, view number V.
Output: Clustering results

: Initialize training parameters
: fori =1:V do:
forj=1:T7,,do:
//pre-training view-specific graph auto-encoders
Update W, v,,, C of view-i graph auto-encoder
using Adam
end for
end for
fori =1:T,, do:
//pre-training shared graph auto-encoders
10: Update W, v,,, C of shared graph auto-encoder using
Adam
11: end for
12: fori =1:7,,,, do:
13: Compute HV, ..., HY) c®, ..., CY) by solving
Eq. (1), (2), (3), (7), (8)

g whye

sro

° ® N

sra

14: Compute FV, ..., F"), CV, ..., CY), Cpy
15: Update W, v,,, C by minimizing Eq. (12) using Adam
16: Run spectral clustering on A\ = %(lC finatl 1€t

to get the clustering results
17: ifi%T ==0:
18: Update the pseudo labels used in Eq. (10)
19: end for
20: return clustering results

co-subject, and node attributes are represented as bag-of-words of key-
words. IMDB represents a movie network comprising co-actor and co-
director relationships, with node attributes described as bag-of-words of
plots. To further validate the effectiveness of our MvCDSC on non-graph-
structured and large-scale datasets, we assess its performance on three
additional datasets, including Caltech101, Yale, and HHAR. Specifically,
Caltech101 is an image dataset comprising 101 object categories and
one background category. For this dataset, we extract six features and
select 1984-dimensional and 512-dimensional features of all images us-
ing HOG and GIST as different views. The Yale dataset, also an image
dataset, includes 165 grayscale photographs of 15 different individu-
als, each with 11 face images. We extract 4096-dimensional and 3304-
dimensional features and construct a graph structure using K-nearest
neighbors. The HHAR dataset contains 10,299 recordings from smart
phones and smart watches, categorized into six human activities. For
HHAR, we employ Euler transformation and K-nearest neighbors to con-
struct a second view. Detailed information and statistical summaries of
these datasets are provided in Table 1.

(2) Baseline Models: We compare the clustering performance of our
proposed model with state-of-the-art clustering methods, including the
following single-view and multi-view methods.

Single-view methods: K-means is a basis clustering algorithm to get k
clusters through repeated interaction. LINE (Tang et al., 2015) is a classi-
cal graph embedding method which preserves first-order proximity and
second-order proximity between nodes. GAE and VGAE (Kipf & Welling,
2016) combine graph convolution with auto-encoder and variational
auto-encoder to learn node representation. MGAE (Wang et al., 2017)
proposes a marginalization process on the node content and paired with
a denoising graph auto-encoder to boost the interplay between graph
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structure and node content. GATE (Salehi & Davulcu, 2019) utilizes self-
attention to measure the relevance between node and its neighbors, then
aggregate node representation accordingly. DAEGC (Wang et al., 2019a)
proposes a neighbor-aware end-to-end framework which integrates em-
bedding learning and node clustering. SDCN (Bo et al., 2020) constructs
a KNN graph and introduces structural information into deep clustering
by combining the representation of auto-encoder and graph convolu-
tional network. MSGA (Wang et al., 2021a) designs a multi-scale self-
expression module to obtain a discriminative coefficient representation
from each layer of the encoder. CAGC (Wang et al., 2017) put forward
the region-level contrast and implements the instance-level contrastive
learning on the node representation before and after the self-expression
layer.

Multi-view methods: RMSC (Xia et al., 2014) is a multi-view spectral
clustering method based on the Markov chain. PWMC (Nie et al., 2017) is
a graph-based multi-view clustering method which employs weights to
each view, and SwWMC is its self-conducted weight version. PMNE (Liu
et al., 2017) processes multilayer networks through network aggrega-
tion. GMC (Wang et al., 2019b) imposes a rank constraint on the unified
graph matrix. MCGC (Pan & Kang, 2021) filter out the undesirable high-
frequency noise via graph filtering and learn a consensus graph regular-
ized by graph contrastive loss. 02MAC (Fan et al., 2020) selects the most
informative view from multiple views by a heuristic metric modularity
to take part in the reconstruction and clustering. MvAGC (Lin & Kang,
2021) integrates graph filter and high-order relations of graph struc-
tures in the graph-based multi-view clustering. CMGEC (Wang et al.,
2021b) takes a simultaneous fusion of node representations and adja-
cency matrices and maintains the similarity of neighboring characteris-
tics of each view in the latent space, the same is true for DFP-GNN (Xiao
etal., 2023). MAGCN (Cheng et al., 2021) is designed with two-pathway
encoders that map node embeddings and learn view-consistency infor-
mation. MGCCN (Liu et al., 2022) introduces a generic and effective
contrastive learning based GCN framework which uses pre-defined com-
bination coefficients to aggregate the heterogeneous multi-view/multi-
layer information. DMVGC (Liu et al., 2024) employs attention mecha-
nisms in the decoders of different views and incorporates a collabora-
tive self-training objective to align clustering outcomes. DuaLGR (Ling
et al., 2023) enhances each view’s graph using pseudo labels to mitigate
the impact of non-homophilous edges and to extract high-level view-
common information. DMCE (Zhao et al., 2023b) utilizes graph recon-
struction and graph contrastive learning to integrate similarity graphs
from different views. DGR (Zhao et al., 2023a) introduces a deep graph-
based MVC method using residual GCN and orthogonal loss. MFCGC
(Yang et al., 2024) devises a fair augmentation strategy for attributed
graphs to guide representation learning, and also proposes a reliable
pseudo-label selection method to enhance contrastive learning.

(3) Evaluation metrics: we evaluate the clustering performance us-
ing four widely used metrics: Accuracy (ACC), Normalized Mutual In-
formation (NMI), Adjusted Rand Index (ARI). The higher values of these
metrics mean better clustering quality.

(4) Parameter settings: For all baseline models, parameters are set ac-
cording to the literatures to achieve optimal performance. In our model,
the dimensions of each layer of the auto-encoder are explored within the
range of {4096, 2048, 1024, 512, 256, 128, 64, 32} and keep consis-
tent throughout pre-training and formal training. To achieve a balanced
loss function and obtain optimal results, trade-off parameters 4,, 4, are
adjusted within the range of 1073 to 10°. Detailed parameter configura-
tions are listed in Table 2. Here, (d,, d,) and (ds, d,) refer to the dimen-
sions of view-specific encoders and shared encoder respectively, while
Iry and Ir, represent their learning rates. Since each view-specific graph
autoencoder is initially pre-trained individually, setting a small learn-
ing rate /r; helps preserve the uniqueness of each view. The parameter
T is set to 10, except for Wiki, Caltech101 and HHAR, where it is set
to 20.
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Table 1
Statistics of the datasets.
Datasets Dataset Types Feature Types Nodes Edges Attributes Classes
Bag of words of keywords, 1433,
Cora graph-structure (multi-attribute) Cartesian transform 2708 5429 2708 7
Bag of words of keywords, 3703,
Citeseer graph-structure (multi-attribute)  Cartesian transform 3327 4732 3327 6
TF-IDF, 4973,
Wiki graph-structure (multi-attribute) Cartesian transform 2405 17,981 2405 17
29281,
ACM graph-structure (multi-layer) Bag of words of keywords 3025 2210761 1830 3
98010,
IMDB graph-structure (multi-layer) Bag of words of keywords 4780 21018 1232 3
Gabor,
Wavelet Moments,
CENHIST, 48, 40, 254,
Caltech101 non-graph-structure (image) HOG, GIST, LBP 9144 - 1984, 512, 928 102
intensity, 3304,
LBP, top-5 and top-2 4096,
Yale non-graph-structure (image) Gabor 165 nearest neighbors 6750 15
Sensor records, top-5 561,
HHAR non-graph-structure (record) Euler transform 10,299  nearest neighbors 561 6
Table 2
The parameter settings of MvCDSC in the formal training.
Dataset (d,,d,) (d3,dy) Ir, Ir, A Ay B
Cora [512,512],[1024,512] [512,512] 0.00002 0.0002 1.0 0.003 (0.7,0.3)
Citeseer [1024,512],[1024,512] [512] 0.00002 0.0002 5.0 0.1 (0.7,0.3)
Wiki [4096,512],[1024,512] [512] 0.00002 0.0003 200 1.5 (0.7,0.3)
ACM [4096,512],[1024,512] [128] 0.00002 0.0002 5.0 10 (0.7,0.3)
IMDB [4096,512],[1024,512] [256,128] 0.00002 0.0001 1.0 0.001 (0.0,1.0)
Caltech101 [512,512],[512,512] [512] 0.0005 0.005 10 0.5 (0.7,0.3)
Yale [2048,512],[2048,512] [512] 0.0001 0.0002 10 0.1 (0.7,0.3)
HHAR [512,512],[512,512] [256] 0.00005 0.0001 100 0.01 (0.7,0.3)
Table 3
The clustering results on multi-attribute datasets.
Methods Input Cora Citeseer Wiki
ACC NMI ARI ACC NMI ARI ACC NMI ARI
K-means bestX 0.500 0.317 0.239 0.544 0.312 0.285 0.417 0.440 0.150
VGAE A&bestX 0.592 0.408 0.347 0.392 0.163 0.101 0.450 0.167 0.263
GATE A&bestX 0.658 0.527 0.451 0.616 0.401 0.381 0.465 0.428 0.316
MGAE A&bestX 0.684 0.511 0.448 0.661 0.412 0.414 0.514 0.485 0.350
DAEGC A&bestX 0.704 0.528 0.496 0.672 0.397 0.410 0.478 0.449 0.324
SDCN A&bestX 0.712 0.535 0.506 0.659 0.387 0.401 0.385 0.375 0.285
MSGA A&bestX 0.747 0.578 0.519 0.698 0.433 0.415 0.522 0.481 0.323
CAGC A&bestX 0.764 0.603 0.552 0.707 0.438 0.463 0.530 0.485 0.336
U1y}
CMGEC ﬁzi(”Zim 0.707 0.485 0.417 0.677 0.367 0.407 _ _ _
MAGCN 0.751 0.598 0.532 0.698 0.418 0.423 0.483 0.427 0.216

MGCCN — ARX&X® 761 0602 0558 0703 0.441 0451  (sar 0454 0.3%6
DMVGC ~ AV&AP&X 0693 0536 0470 0.691  0.438  0.457 - = bt
MFCGC A&XM&X® 0744 0561 0531  0.704 0.447 0.466  0.544 0481  0.363

MvCDSC AX DX 0.768  0.604 0.573 0.713 0.441 0.467 0.549 0.487 0.369

4.2. Performance comparison ¢ In most cases, the clustering methods that use both node feature and
adjacency matrix tend to achieve better performance than those us-
To estimate the clustering performance of our proposed MvCDSC, ing only one of them. This underscores the significance of node fea-
we run the aforementioned baseline models ten times and report the tures and adjacency graphs in clustering. Moreover, multi-view ap-
average score to avoid the randomness. For part of baseline models, we proaches usually outperform single-view methods due to their ability
quote the clustering performance on four metrics from previous studies to leverage richer information.
and mark it as ’-’ if not exists. The results are shown in Tables 3-6, where e Compared with traditional shallow models, deep neural net-
the bold values indicate the best performance. For single-view methods, work based methods usually achieve better performance, ow-
we perform the methods on each view respectively and report the best ing to their capacity in extracting more useful information from
results. node feature and adjacency matrix and combining them more
From the experimental results, we have the following observations: efficiently.



e The proposed MvCDSC consistently outperforms most baseline meth-
ods across four evaluation metrics. On the Cora dataset, MvCDSC
demonstrates improvements over the suboptimal method, CAGC,
with increases of 0.4% in ACC, 0.1% in NMI, and 2.1% in ARI.
On the IMDB dataset, compared to the second-best method MFCGC,
MvCDSC shows enhancements of 5.07% in ACC, 4.74% in F1, and
2.43% in ARI. On the Caltech101 dataset, MvCDSC outperforms the
strongest baseline DMCE, with improvements of 3.91% in ACC and
a remarkable 9.75% in ARIL

e MvCDSC also performs well on non-graph-structured datasets, de-
spite not being specifically designed for them. This robustness can be
attributed to the power loss function and architecture, which main-
tain performance even when the autoencoder is replaced by MLP.
This indicates that MvCDSC is versatile and applicable beyond graph-
structured datasets.

e While the quality of pseudo-labels is important for the improved
contrastive learning, MvCDSC effectively mitigates the impact of
poor-quality pseudo-labels through the pre-training phase combined
with well-designed model architecture and proper learning rate.
This combination helps generate high-quality pseudo-labels. No-
tably, even on challenging datasets like Caltech101, where obtain-

Y. Gan et al. Expert Systems With Applications 307 (2026) 130921
Table 4
The clustering results on multi-layer datasets.
Methods Input ACM IMDB
ACC NMI ARI ACC NMI ARI
@ @
LINE-avg :mg:m 0.6479  0.3941  0.3432  0.4719  0.0063  -0.0090
PMNE e a® 0.6936  0.4648  0.4302  0.4958  0.0359  0.0366
RMSC A& 0.6315  0.3973  0.3312  0.2702  0.0054  0.0018
PwMC AV&A® 0.4162  0.0332  0.0395  0.2453  0.0023  0.0017
SWMC ADGA® 0.3831  0.0838  0.0187  0.2671  0.0056  0.0004
GAE-avg  X&bestA 0.6990  0.4771  0.4378 (4440  0.0413  0.0491
DAEGC X&bestA 0.8909  0.6430  0.7046 (3683 0.0055  0.0039
CAGC X&bestA 0.917 0.711 0.769 - - -
X&AVZAD
02MAC YaAga® 09042 06923 07394 04502  0.0421  0.0564
MvAGC Yeabga® 08975 06735 07212 05633  0.0371  0.0940
CMGEC (e e 09089 06912 07232 04844  0.0514  0.0469
MGCCN ~ X&AV&A 0.9167 07095  0.7688  0.5490  0.0567  0.1071
DualGR ~ X&AV&A® 09270 07320 07940  0.5421  0.0600  0.1348
MFCGC X&AVA®?  0.9276 07403 07983  0.5429  0.0893  0.1093
MvCDSC  X&AM&A® 09210  0.7333  0.7800  0.5936  0.0687  0.1336
Table 5 ing high-quality pseudo-labels is difficult, MvCDSC achieves better
The clustering results on image datasets. results. These results indicate the robustness of our improved con-
Caltech101 Yale trastive learning strategy.
Methods
ACC NMI ARI ACC NMI ARI )
K-means  0.1370  0.3040  0.0835  0.6097  0.6610  0.4220 4.3. Ablation study
GMC 0.1950  0.2379  0.0042  0.6182  0.6735  0.4336
O2MAC 0.1168  0.3089  0.0275  0.4945  0.5718  0.3336 To validate the efficacy of various components in our model (12),
MCGC 0.2430  0.3907  0.1249  0.7454  0.7494  0.4735 d blati d he C Ci 4 IMDB d
CMGEC 01898 04126 01807 04667 05413 02191 we conduct an ablation study on the Cora, Citeseer, an atasets.
DFP-GNN  0.2025 ~ 0.4153  0.3367  0.3313  0.3910  0.2569 The loss functions L,,, L, L.,, and L. correspond to each functional
DMCE 0.2718  0.4682  0.3246 07261  0.7336  0.5243 : . . .
DGR 02717 04719 03208 07667 07530 05295 rn.odl.ﬂe as previously descrlbed.. All ablation experiments are conducted
within the framework of pre-trained graph auto-encoders. Spectral clus-
MvCDSC  0.3109  0.4528  0.4221  0.7694 07569  0.5349 tering remains employed for C ;.
We compare four different training strategies for MvCDSC:
Table 6
The clustering results on large datasets. ¢ Using only reconstruction loss and self-expression loss.
HHAR e Using reconstruction loss, self-expression loss and contrastive learn-
Methods in
g.
Acc NMI ARI ¢ Using reconstruction loss, self-expression loss and multi-scale consis-
K-means  0.5736  0.6009  0.4639 tency.
02MAC  0.7219  0.6336  0.5470 .
MAGCN  0.6695 07002  0.5783 * The total loss function.
MGCCN  0.7402  0.7094  0.5871
MFCGC  0.7606  0.7012  0.6152 Table 7 illustrates the role of each functional module in enhanc-
MvCDSC  0.8014 0.7472  0.6617 ing the clustering performance of MvCDSC. Particularly, the two-stage

pre-training and contrastive learning loss significantly contribute to
this improvement. indicating L., provides supplementary information
for Cy,y- When L term is removed, the clustering performance of
MvCDSC decreases across all datasets. The results demonstrate that the
multi-scale consistency may serve as a vital coordination mechanism
to integrate multi-scale information within the model. On the IMDB
dataset, with fusion weight coefficients [0,1], MvCDSC appears to de-
generate into single-view clustering. However, the loss functions ensures
its essence as a multi-view clustering model. Removal of L, ,, and L,
compromises its performance, indicating the importance of adjusting
and interacting self-expression coefficient matrices across views.

4.4. Parameter analysis

We examine the sensitivity of various parameters, including trade-
off parameters (4, and 4,), dimensions and layers of the shared graph
auto-encoder, and fusion weight coefficients of self-expression coeffi-
cient matrices. Additionally, we compare the proposed enhanced con-
trastive learning with previous contrastive learning strategies.

(1) The effect of trade-off parameters: We first analyze the influence
of trade-off parameters. Take the Cora dataset as an example, we tune
the tested parameter from 10~3 to 103 and fix other parameters with the
values in Table 2.
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Table 7
Ablation study.
Cora Citeseer IMDB
L,+L, L, L, ACC NMI  ARI ACC  NMI  ARI ACC NMI ARI
v 0.744 0.569 0.547 0.688 0.427 0.439 0.5443 0.0602 0.0894
v v 0.763 0.594 0.567 0.708 0.434 0.460 0.5863 0.0633 0.1238
v v 0.757 0.580 0.557 0.703 0.428 0.453 0.5790 0.0702 0.1246
v v v 0.768 0.604 0.573 0.713 0.441 0.467 0.5936 0.0687 0.1336
Table 8
Comparison between different versions of contrastive learning on Cora and IMDB datasets.
Different versions of contrastive learning Cora IMDB
ACC NMI ARI ACC NMI ARI
traditional contrastive learning 0759 0584 0562 05857 0.0619  0.1221
self-consistent contrastive learning 0.761  0.584 0565 0.5765 0.0632  0.1204
our improved contrastive learning 0.768 0.604 0.573 0.5936  0.0687  0.1336
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Fig. 4. The clustering performance (ACC, NMI and ARI) of 4, and 4, on Cora dataset.

Table 9

Computation time of several
methods (seconds) on Cora
and HHAR dataset.

Methods Cora HHAR
MAGCN 1145  350.7
MGCCN 1729  886.3
MFCGC 225.5  1393.0
SGCMC 300.4  1496.1
MvCDSC  220.3  1254.9

Fig. 3 shows the influence of individual trade-off parameters on the
clustering performance. Notably, variations in 4, lead to minimal fluctu-
ations in clustering metrics, indicating that the contrastive objective acts
as a stable regularizer without overly dominating the overall training dy-
namics. As 4, gradually decrease, the clustering performance gradually
converges to the optimum. When 4, = 1000, a decline is observed, sug-
gesting that excessive emphasis on consistency may influence the fused

self-expression coefficient matrix. This represents a failure case that ex-
cessive emphasis on cross-layer consistency overly constrains the view-
specific encoders, suppressing their ability to capture unique, discrimi-
native structural patterns. This leads to representation homogenization
and degrades clustering quality. 1, relate to self-expression coefficient
matrix optimization and information supplementation, which are criti-
cal for improving clustering metrics. The results indicate that contrastive
learning can provide a reliable guarantee and only needs a small amount
of information supplementation.

Subsequently, we analyze the combined impact of 4; and 1, on the
Cora dataset. Both parameters ranging from 10~3 to 103. As illustrated
in Fig. 4, the clustering performance exhibits improvement as 1, de-
creases from 10° to 10 and continues to rise marginally as 1, decreases
to 1073, Notably, too high or small values of 4, are unsuitable for clus-
tering. Optimal clustering performance are achieved when 4, = 1 and
A, = 0.001. The results demonstrate that L., and L, can sufficiently
explore multi-view consistency across multi-scale information and de-
cision space, achieving good clustering results. This analysis provides
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practical guidance for avoiding over-regularization in real-world de-
ployment.

(2) The effect of weight coefficients: After obtaining the view-specific
self-expression coefficient matrices, these matrices are combined using
a set of weights. The impact of different combinations of weights on
clustering performance is illustrated in Fig. 5. In this figure, the x-axis
represents the weight of view 1, while the y-axis indicates clustering
performance. Given that the sum of the weights for the two views is
1, the weight for the second view can be inferred accordingly. Overall,
performance slightly degrades at both extremes, as the model effectively
reduces to a single-view regime, losing the benefit of multi-view com-
plementarity. For multi-attribute datasets, the second attribute is con-
structed via a Cartesian product, which is not the same as the original
attribute. As for quality, the self-expression coefficient matrix corre-
sponding to the original attribute should predominantly contribute to
the fusion. For multilayer datasets, each view has a distinct adjacency
graph that represents the different relationships between nodes, which
influences the proximity of node representations in the embedding
space. For the ACM dataset, the Paper-Author-Paper (PAP) relationship
significantly enhances clustering performance compared to the Paper-
Subject-Paper (PSP) relationship. Conversely, for the IMDB dataset, the
Movie-Director-Movie (MDM) relationship is so influential that it an-
other view is not needed for fusion. Based on the clustering performance
of MvCDSC with different combinations of weights, we observe that
MvCDSC exhibits remarkable robustness to weight assignment across
views, empirically validating the parameter efficiency and operational
feasibility of the fusion strategy.

Further, we evaluate the performance of MvCDSC with attention-
based weights to compare the effect of different multi-scale fusion
strategies. As shown in Supplementary Tables 1 and 2, compar-
ative experiments at different learning rate reveal that attention-
weighted fusion does not yield notable performance gains, but
introduces significant computational overhead. Meanwhile, atten-
tion mechanisms introduce high sensitivity to learning rate tun-
ing, requiring more hyperparameter optimization effort than our
method.
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(3) The effect of improved contrastive learning: To verify the ef-
fectiveness of the proposed contrastive learning strategy, we compare
it with traditional contrastive learning and self-consistent contrastive
learning. The difference among these types of contrastive learning lies
in that traditional contrastive learning pushes away node pairs belong-
ing to the same class as negative pairs, while self-consistent contrastive
learning brings them closer. Our approach is to treat such node pairs as
false negative pairs, neither pulling them closer nor pushing them away.
Table 8 demonstrates that traditional strategies of pushing apart and
pulling together exhibit varying performances across different datasets.
In contrast, our neutral strategy consistently delivers superior results.
Besides, it is important to note the impact of pseudo-label quality. Poor-
quality pseudo-labels can cause our improved contrastive learning to
regress to a form similar to traditional contrastive learning. Pseudo-
labels of excessively high quality do not yield disproportionately large
performance gains. To address this, we carefully design the model ar-
chitecture, training epochs, and learning rate to ensure a decent quality
of pseudo-labels at the beginning. Overall, regardless of pseudo-label
quality, the improved contrastive learning improves the performance.

(4) The effect of dimensions and layers of shared graph auto-encoder:
On different datasets, the dimensions and layers of shared graph auto-
encoder often need to be adjusted. Take the Cora dataset as an exam-
ple, we explore the dimensionality settings for each graph convolutional
layer within the range of [128, 256, 512, 1024]. The number of graph
convolutional layers in the shared graph auto-encoder are constrained
to a maximum of two. As illustrated in Fig. 6, d' and d? represent
the dimensions of the first and second layers of the shared graph auto-
encoder, respectively. d> = 0 indicates a single-layer configuration. The
four curves in the figure correspond to scenarios where d'! is set to 1024,
512, 256, and 128, with d? varying accordingly. The results indicate that
MvCDSC exhibits reasonable fluctuations in performance as the dimen-
sions vary significantly. However, there is a notable decline in clustering
performance when the difference in dimensions between the first and
second layers is substantial. This suggests that more experimentation
is required to optimize layer dimensions. Furthermore, the experiment
demonstrates the robustness and rationality of our model structure.
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4.5. Computation time

To evaluate the efficiency of the proposed method, we compare
MvCDSC with four representative methods on both small (Cora) and
large (HHAR) datasets. Based on the availability of source code and
runtime environment, we select MAGCN, MGCCN, MFCGC and SGCMC
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for the comparison. The former three methods are representation-based
deep multi-view clustering methods. In contrast, SGCMC and our pro-
posed MvCDSC is a subspace-based deep multi-view clustering method.
We measure the computation time until each method reaches its op-
timal solution. From the experimental results (Table 9), we observe
that on the small dataset, the computation times for each method were
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similar. However, on the large dataset, representation-based DMVC
methods demonstrated advantages in terms of efficiency. MvCDSC re-
quires additional time for implementing spectral clustering, which in
turn provides higher metrics and improved stability. Nonetheless, this
time investment is generally acceptable, as the suboptimal method
MFCGC, requires a similar amount of time as our model.

Also, we conduct computational complexity analysis for the pro-
posed MvCDSC and other state-of-the-art methods (see the subsection
“Complexity comparison” in Supplementary analysis). As shown in Sup-
plementary Table 3, while MvCDSC incorporates an additional shared
graph autoencoder, the overall framework maintains remarkable sim-
plicity and computational efficiency.

4.6. Visualization of clustering results

To intuitively validate the effective of McCDSC, we implement t-
SNE on the learned Cy,,, at three different epochs on Citeseer and
ACM datasets, where different colors indicates different cluster labels.
As shown in Fig. 7, as the number of epochs increases, the inter-cluster
gaps between subspace representations of different clusters widen, while
similar subspace representations gradually converge. The emergence of
intra-cluster gaps is unavoidable due to the inherent nature of subspace
representation construction. These results demonstrate that MvCDSC ef-
fectively meets our clustering needs. The results further indicate that
MvCDSC effectively leverages multi-view consistency and complemen-
tarity to learn a discriminative self-expression coefficient matrix Cy;,,,
improving clustering results.

4.7. Convergence analysis

To validate the multi-scale consistency mechanism, we performed
quantitative analyses of both the total loss and consistency loss L,
across the Cora and Wiki datasets. As illustrated in Fig. 8(a,c), the to-
tal loss converges after 60 epochs (Cora) and 50 epochs (Wiki) with
characteristic rapid initial decrease followed by asymptotic stabiliza-
tion. Meanwhile, Lsc exhibits similar convergence dynamics to the total
loss, confirming its tight coupling with the overall optimization process
(Fig. 8(b,d)).Further correlational analysis (Fig. 8(c, f)) reveals that clus-
tering metrics (ACC/NMI/ARI) show marked improvement concurrent
with the convergence of Lsc and total loss despite early-training fluc-
tuations. This empirically verifies that Lsc actively governs latent rep-
resentation learning for clustering, and multi-scale consistency directly
contributes to final performance.

5. Conclusion

In this article, we propose MvCDSC, a contrastive deep subspace
clustering framework for multi-view graph data. MvCDSC utilizes view-
specific graph auto-encoders and a shared graph auto-encoder to cap-
ture the intricacies of each view while exploring shared information
across views. Different from prior DSC methods focusing on single-scale
self-expression or embedding-level contrastive learning, MvCDSC intro-
duces multi-scale consistency directly on self-expression matrices across
layers, enforcing alignment between shallow and deep self-expression
matrices. The Shallow layers preserve neighborhood structures while
the deep layers capture global semantics. To mitigate heterogeneity
gaps and semantic disparities, we introduce subspace-aware contrastive
learning operating directly on self-expression coefficients, adopt false-
negative exclusion strategy to mitigate sparse connectivity errors. This
strategy align semantic affinities rather than raw features, which is more
aligned with the clustering objective. MvCDSC unifies representation
learning, subspace modeling, and contrastive alignment in a single end-
to-end framework. This framework balances consistency, complemen-
tarity, and multi-scale representation learning, with potential applica-
tions in recommendation systems, bioinformatics, and social network
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analysis. Extensive experimental results demonstrate that MvCDSC out-
performs state-of-the-art methods in node clustering tasks. Meanwhile,
MvCDSC exhibits s strong generalization across diverse data types,
including non-graph datasets like Caltech101 and multilayer graphs
(ACM/IMDB), underscoring its versatility in handling view heterogene-
ity. For future work, we aim to extend the application of MvCDSC to
datasets with a greater number of views and to enhance its computa-
tional efficiency.
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