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 a b s t r a c t

Multi-view clustering aims to discover inherent data structure by leveraging complementary perspectives of graph 
data. Although deep subspace clustering methods have achieved impressive performance, they usually construct 
the self-expression matrix using only the final embedding. This approach may overlook multi-scale information 
embedded across network layers and consistency between subspace representations and clustering labels. To 
address these limitations, we propose MvCDSC, an effective contrastive deep subspace clustering framework for 
multi-view graph-structured data. MvCDSC integrates view-specific and shared graph autoencoders to capture 
view-specific intricacies while learning cross-view shared representations. Its key innovations include two as-
pects. First, a multi-scale consistency mechanism aligns self-expression matrices across shallow and deep layers 
through layer-wise constraints. This captures multi-scale information and enriches the construction of represen-
tations. Second, an improved contrastive learning strategy is applied directly to the self-expression coefficient 
matrices. By redefining positive, false-negative, and negative pairs using pseudo-labels, this strategy effectively 
bridges semantic gaps across multiple views. Extensive experimental results demonstrate that MvCDSC outper-
forms state-of-the-art methods in node clustering tasks. The source code of the proposed MvCDSC is available at 
https://github.com/DHUDBlab/MvCDSC.

1.  Introduction

Graph-structured data delineates intricate relationships among en-
tities through nodes, edges, and attributes, playing significant roles in 
various domains of data analysis, such as citation networks and drug-
drug interactions (Gan et al., 2023). Node clustering segregates graph 
nodes into distinct groups, aiming to maximize intra-cluster similar-
ity and minimize inter-cluster similarity (Wang et al., 2019a). Previ-
ous clustering methods primarily focus on single-view data. However, 
real-world objects are often represented in multiple forms. Compared to 
single-view data, multi-view data provides richer information that can 
further refine clustering results. Nonetheless, multi-view clustering faces 
challenges such as significant modality gaps, dimensional disparities in 
node features, and diverse relation types, complicating view integration 
and multi-view clustering.

To date, a variety of multi-view clustering (MVC) methods have been 
proposed (Fang et al., 2023). Graph-based MVC methods (Lin & Kang, 
2021; Pan & Kang, 2021; Wang et al., 2019b) seek to construct a con-
sensus similarity graph by fusing or weighted approximating multiple 
similarity graphs, and then utilize graph-cut algorithms to obtain the 
clustering assignments. Matrix factorization-based MVC methods (Liu 
et al., 2013) decompose the data representation of each view into a ba-
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sis matrix and a coefficient matrix, then implement constraints to derive 
the final coefficient matrix. Collaborative training-based MVC methods 
(Xu et al., 2021) iteratively select a view as the reference to guide the 
learning of other views, achieving impressive clustering performance 
through mutual learning between views. Kernel-based methods (Sun 
et al., 2021) construct a set of base kernels and a consensus kernel to 
process non-linear data, thus avoiding pre-defined problems. Although 
these traditional shallow models have achieved significant success, they 
also encounter difficulties in revealing nonlinear data relations and pro-
cessing high-dimensional data. Recently, deep model-based MVC meth-
ods have garnered significant attention attributed to their remarkable 
learning capabilities. Particularly, based on the assumption that a data 
point can be expressed as a linear combination of other points in the 
same cluster, deep subspace clustering (DSC) (Cheng et al., 2022; Lele 
et al., 2022; Xia et al., 2021; Zhu et al., 2019) inserts a self-expression 
layer between the encoder and decoder to construct an affinity ma-
trix for spectral clustering. The linear combination is captured by the 
self-expression coefficient matrices. This self-expression property is the 
core idea of subspace clustering. Observing that only utilizing the rep-
resentation of the deepest hidden encoder layer for clustering might 
waste useful information embedded in other layers, Wang et al. (2021a) 
consequently constructed self-expression layers at each encoder layer,
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enriching the self-expression coefficient matrix with multi-scale infor-
mation. While deep subspace clustering methods have achieved impres-
sive performance, they often construct the self-expression matrix based 
only on the final embedding. This critical omission ignores the multi-
scale information embedded in different layers, leading to potentially 
sparse or incomplete coefficient matrices, and disregards the necessary 
consistency between the learned subspace representations and the final 
clustering labels (ABUD-ALLAH, 2024).

To make multiple clustering assignments consistent across different 
views (Xu et al., 2021), contrastive learning (Chen et al., 2020; He et al., 
2020) has recently been adopted to enhance multi-view consistency. In 
traditional contrastive learning, the representations of the same node in 
different views forms a positive pair, while different nodes form nega-
tive pairs (Liu et al., 2022; You et al., 2020). Through node embedding, 
positive pairs are pulled closer and negative pairs are pushed away in the 
embedding space. This strategy lead to some similar samples from the 
same category being incorrectly classified as negative samples, which is 
not conducive to the downstream clustering task (Wang et al., 2017). 
Xia et al. (2022) proposed self-consistent contrastive learning, which 
redefined positive and negative pairs by introducing pseudo labels. In 
two views, for a node, it forms positive pairs with nodes with the same 
pseudo label, while forming negative pairs with the remaining nodes. 
However, pulling closer the node representations in different views is 
actually difficult because of large heterogeneous gap and semantic in-
formation difference. To alleviate the heterogeneity and promote better 
alignment of node representations, a shared auto-encoder is used to map 
node representations from different views into a common latent space. 
Yet another problem remains unsolved. Considering the semantic con-
sistency that comes with self-expression coefficient matrices of different 
views, self-expression coefficient matrices might be more suitable for 
contrastive learning. On the other hand, since each view offers unique 
perspectives on the object, the integration of multiple views can enrich 
the clustering process with complementary information. For multi-view 
data, the fusion of information obtained from each view is a way to 
leverage complementarity. Cao et al. (2015) proposed an HSIC term to 
promote the diversity of subspace representations from different views, 
in order to further enhance the effect of complementarity. Achieving a 
balance between consistency and complementarity is still a challenging 
task now.

To address the aforementioned challenges, we propose a multi-view 
contrastive deep subspace clustering method (MvCDSC) for attributed 
graph. MvCDSC consists of multiple independent graph auto-encoders 
and a shared graph auto-encoder. Each auto-encoder is incorporated a 
self-expression layer to derive the self-expression coefficient matrix. No-
tably, we introduce an effective contrastive learning strategy specifically 
for deep subspace clustering, which redefines positive, false negative, 
negative samples according to pseudo labels obtained from clustering 
to promote semantic consistency across self-expression coefficient ma-
trices of different views. With the shared auto-encoder and contrastive 
learning, our approach facilitates effective view fusion. Furthermore, to 
take advantage of multi-scale information, we minimize the disparity 
between the view-specific self-expression coefficient matrices and the 
fused one. This strategy not only ensures consistency in the decision 
space but also enhances the mutual complementarity between matrices 
corresponding to both shallow and deep topologies.

In summary, the major contributions of this paper are summarized 
as follow:

• We propose MvCDSC, an effective contrastive deep subspace cluster-
ing framework designed for multi-view graph-structured data. The 
framework employs view-specific graph autoencoders along with a 
shared graph autoencoder to capture the intricacies of each view 
while exploring shared information across views.

• We propose a new contrastive learning strategy that redefines posi-
tive, false negative, and negative pairs based on pseudo labels. This 
strategy is compatible with the self-expression coefficient matrix 

learning, effectively addressing the problems of heterogeneous and 
semantic gaps of multiple views.

• We respectively construct the self-expression coefficient matrices 
corresponding to shallow and deep graph convolution layers and en-
sure multi-scale information consistency.

• Extensive experiments on graph-structured datasets demonstrate 
that our proposed method outperforms state-of-the-art single-view 
and multi-view clustering methods. This end-to-end framework is 
applicable to two kinds of multi-view graph-structured datasets and 
demonstrates robust generalization.

2.  Related work

2.1.  Contrastive learning

Attributed to the unsupervised learning capability, contrastive learn-
ing has gained great attention in computer vision field (Chen et al., 2020; 
He et al., 2020). It aims to maximize mutual information by bringing 
positive pairs closer while simultaneously pushing away negative pairs 
in the embedding space. Several studies have introduced contrastive 
learning into graph learning. For example, GRACE (Zhu et al., 2020) 
leverages graph corruption techniques at both structural and attribute 
levels to generate two distinct graph views. Subsequently, node-level 
contrastive learning and the InfoNCE loss are applied to both views. Sim-
ilarly, GraphCL (You et al., 2020) conducts graph-level contrast by sum-
marizing graph representation through the readout function. Moreover, 
mutual information maximization can be performed at different scales. 
For instance, DGI (Velickovic et al., 2019) maximizes mutual informa-
tion between node representations and a summary vector that captures 
global information of the entire graph. In GMI (Peng et al., 2020), each 
node incorporates node features and adjacency information of k-hop 
neighbors as its sub-graph, then maximizes mutual information between 
its node representation and the sub-graph. GCL4SR (Zhang et al., 2022) 
is a graph contrastive learning method for sequential recommendation, 
leveraging a Weighted Item Transition Graph (WITG) to capture global 
item transition patterns. It enhances sequence representations by align-
ing local and global contexts through subgraph-based contrastive learn-
ing and multi-scale consistency objectives. AdaGCL (Jiang et al., 2023) 
is a self-supervised contrastive learning framework for recommendation 
systems, which introduces adaptive view generators (a graph genera-
tor and a denoising model)to dynamically create contrastive views. It 
addresses data sparsity and noise by generating task-aware augmenta-
tions and mitigating model collapse through adversarial training. UM-
CGL (Du et al., 2024) is a multi-view consensus graph learning frame-
work that considers both original and generative graphs to balance con-
sistency and diversity. SMGCL (Zhou et al., 2023) constructs (node, sub-
graph) data pairs and (node, node) data pairs for contrast. However, 
contrastive learning usually ignores the category of the node, leading to 
some true positive pairs being mistakenly considered as negative pairs. 
Consequently, SCAGC (Xia et al., 2022) introduces a two-layer fully con-
nected network on the Siamese network to obtain clustering labels, then 
refine contrastive learning. Similarly, CAGC (Wang et al., 2017) selects 
k-nearest neighbors in the latent space as positive pairs for each node, 
with the remaining nodes serve as negative pairs. PGCL-DCL (Hu et al., 
2024) learns discriminative multi-view features and satisfactory clus-
tering result by pseudo-label guided CL and dual correlation learning. 
MFCGC (Yang et al., 2024) employs a pseudo-label selection method to 
construct reliable positive and negative pairs.

2.2.  Deep multi-view clustering

Deep learning models boost the development of multi-view clus-
tering, facilitating the modeling of inter-view relations and the learn-
ing of latent representations. Utilizing a heuristic metric of modularity, 
O2MAC (Fan et al., 2020) selects the most informative view among mul-
tiple views to perform encoding, decoding, and self-training clustering. 
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Fig. 1. The framework of the proposed method MvCDSC. MvCDSC consists of two main modules, including feature embedding module and self-expression matrix 
learning module. Multi-view graph data are first encoded by view-specific graph autoencoders to produce view-specific latent representations. These are then fed 
into a shared graph autoencoder to learn a common subspace. Self-expression layers are applied at multiple levels to generate coefficient matrices. A contrastive loss 
aligns cross-view self-expression matrices using pseudo-labels, while a multi-scale consistency loss regularizes shallow and deep matrices. The final fused coefficient 
matrix is used for spectral clustering.

Despite focusing on the most informative view, valuable information 
inherent in other views remains overlooked. SGCMC (Xia et al., 2021) 
introduces a new view construction method, and subsequently learns 
the view-consensus coefficient representation to facilitate spectral clus-
tering, leveraging shared graph auto-encoder and geometric relation-
ship similarity. A2AE (Sun et al., 2022) integrates the node representa-
tion of each view into a final representation using an attention mech-
anism. CMGEC (Wang et al., 2021b) and DFP-GNN (Xiao et al., 2023) 
integrate the adjacency matrix of each view into a consensus graph to 
incorporate complementary information. To tackle the issue of unbal-
anced feature dimensions, UMDL (Xu et al., 2023) constructs an over-
complete dictionary and utilizes a combination of atoms to transform 
the original data. However, these methods neglect to address the con-
sistency between views, and the instability in model training caused by 
the attention mechanism. MvDSCN (Zhu et al., 2019) and SCMC (Lele 
et al., 2022) consider both consistency and complementarity. MGCCN 
(Liu et al., 2022) and DCMSC (Cheng et al., 2022) extend node-level con-
trastive learning to node representation, subspace representation, and 
high-order semantic representation.

3.  Proposed method

MvCDSC is a new contrastive deep subspace clustering framework 
specifically designed for multi-view graph-structured data. As illustrated 
in Fig. 1, it consists of several main modules, including feature embed-
ding module and self-expression matrix learning module. Specifically, 
feature embedding module introduces graph auto-encoder to map node 
attribute and adjacency matrix into a low-dimensional latent space, 
which is used for downstream node clustering task. Self-expression 
learning module consists of two parts, which introduce the improved 
contrastive learning and multi-scale information consistency minutely. 
The details will be elaborated in the following sections.

3.1.  Notations

An undirected attribute graph is represented as 𝐺 = (𝑁𝑒, 𝐸,𝑋), 
where 𝑁𝑒 is the nodes set, 𝐸 is the edge set, and 𝑋 =
{𝑥1, 𝑥2,… , 𝑥𝑛} ∈ ℝ𝑛×𝑑 is the node attribute matrix. 𝑑 is the di-
mension of node feature, 𝑛 is the number of nodes, and 𝑥𝑖 ∈ 𝑅𝑑

corresponds to the feature vector of node 𝑖. 𝐴 ∈ ℝ𝑛×𝑛 is the adjacency 
matrix describing the connectivity among nodes. 𝐴𝑖𝑗 = 1 if (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 , 
otherwise 𝐴𝑖𝑗 = 0.

For multi-view graph-structured data, it can be divided into two 
categories. One type is based on multi-attribute data, composed of 
multiple node attribute matrices and a common adjacency matrix, 
i.e. 𝑋 = {𝑋(𝑣) ∈ ℝ𝑛×𝑑(𝑣)}𝑉𝑣=1, 𝐴 ∈ ℝ𝑛×𝑛. The other type is based on 
multi-layer data (Liu et al., 2022), composed of a node attribute matrix 
and multiple adjacency matrices, i.e. 𝑋 ∈ ℝ𝑛×𝑑 , 𝐴 = {𝐴(𝑣) ∈ ℝ𝑛×𝑛}𝑉𝑣=1. 
𝑉  represents the number of views, 𝑑(𝑣) represents the dimension of 
node features in 𝑣th view. Multi-view graph clustering divides the 𝑛
unlabeled nodes into 𝑘 disjoint clusters by leveraging data collected 
from different sources or modalities, aiming to discover the underlying 
data structure.

3.2.  Feature embedding module

In order to embed the node attributes and the relationship among 
nodes into a low-dimensional latent space, the feature embedding mod-
ule introduces two types of graph auto-encoder, including view-specific 
and shared graph auto-encoder. View-specific graph auto-encoders are 
used separately for each view to unify the dimensions. The learned node 
representations and adjacency matrices are further fed into the shared 
graph auto-encoder. Then all nodes are embedded into a common la-
tent space, facilitating subsequent fusion and contrastive learning. For 
the graph auto-encoder, similar to GATE (Salehi & Davulcu, 2019), we 
utilize the attention mechanism on GAE to discern the importance of 
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connections between nodes and their neighbors.
Encoder: Receiving the node attribute matrix 𝑋 and adjacency ma-

trix 𝐴 as input, the encoder functions with 𝐿 layers.
As the output of the 𝑙th layer, the representation of node 𝑖 can be 

formulated as:
ℎ(𝑙)𝑖 =

∑

𝑗∈𝑁𝑖

𝛼(𝑙)𝑖𝑗 𝜎(ℎ
(𝑙−1)
𝑗 𝑊 (𝑙)) (1)

𝛼𝑖𝑗 =
𝑒𝑥𝑝(𝑒(𝑙)𝑖𝑗 )

∑

𝑘∈𝑁𝑖
𝑒𝑥𝑝(𝑒(𝑙)𝑖𝑘 )

(2)

𝑒(𝑙)𝑖𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜎(ℎ(𝑙−1)𝑖 𝑊 (𝑙))𝑣(𝑙)𝑠 + 𝜎(ℎ(𝑙−1)𝑗 𝑊 (𝑙))𝑣(𝑙)𝑟 ) (3)

where ℎ(𝑙)𝑖  is 𝑖th row of node representation matrix 𝐻 (𝑙), 
𝑊 (𝑙) ∈ 𝑅𝑑(𝑙−1)×𝑑(𝑙) , 𝑣(𝑙)𝑠 , 𝑣(𝑙)𝑟 ∈ 𝑅𝑑(𝑙)  are the trainable parameters of 
the 𝑙th encoder layer. 𝑁𝑖 represents the neighbors of node 𝑖. 𝛼(𝑙)𝑖𝑗
represents the relevance of a neighboring node 𝑗 to node 𝑖. 𝐻 (0) = 𝑋, 
𝐻 (𝐿) ∈ 𝑅𝑛×𝑑(𝐿) , 𝑑(𝐿) < 𝑑. 𝐻 (𝐿) is the output of the 𝐿th encoder layer, 
which is chosen as the final representation of nodes. The encoding 
process reduces dimensionality and eliminates redundant information.

Decoder: We use a symmetric decoder to reconstruct the node at-
tribute matrix 𝑋. Decoder takes node representation 𝐻̂ (𝐿) = 𝐻 (𝐿)𝐶 as 
input. The decoder utilizes previously calculated parameters 𝑊 (𝑙) and 
𝛼(𝑙)𝑖𝑗  to reverse the encoding process, the node representation in the 𝑙th 
decoder layer can be formulated as:
ℎ̂(𝑙−1)𝑖 =

∑

𝑗∈𝑁𝑖

𝛼(𝑙)𝑖𝑗 𝜎(ℎ̂
(𝑙)
𝑗 𝑊 (𝑙)𝑇 ) (4)

where ̂ℎ(𝑙)𝑖  is the 𝑖th row of 𝐻̂ (𝐿). 𝑋̂ = 𝐻̂ (0) is the output of the last layer.
We respectively adopt two kinds of reconstructions to verify the qual-

ity of node representations. First, the node attribute reconstruction loss 
is defined as:
𝐿𝐴𝑅 = ||𝑋 − 𝑋̂||

2
𝐹 (5)

Meanwhile, to ensure that the representations of neighboring nodes 
are similar, the graph structure reconstruction loss is defined as:

𝐿𝐺𝑅 = −
𝑛
∑

𝑖=1

∑

𝑗∈𝑁𝑖

𝑙𝑜𝑔

(

1
1 + 𝑒𝑥𝑝(−ℎ𝑖ℎ𝑇𝑗 )

)

(6)

The total reconstruction loss in this module can be formulated as:

𝐿𝑟𝑒 =
2𝑉
∑

𝑣=1

⎛

⎜

⎜

⎝

||𝑋(𝑣) − 𝑋̂(𝑣)
||

2
𝐹 − 1

2

𝑛
∑

𝑖=1

∑

𝑗∈𝑁𝑖

𝑙𝑜𝑔
⎛

⎜

⎜

⎝

1

1 + 𝑒−ℎ
(𝑣)
𝑖 ℎ(𝑣)𝑗

𝑇

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

(7)

where 𝑋(𝑉 +1) = 𝐻 (1), …, 𝑋(2𝑉 ) = 𝐻 (𝑉 ), 𝐻 (𝑉 +1) = 𝐹 (1), …, 𝐻 (2𝑉 ) = 𝐹 (𝑉 ). 
𝜆1 is a trade-off parameter. 𝐻 (𝑣) and 𝐹 (𝑣) respectively represent outputs 
of view-specific encoders and shared encoder for view 𝑣.

3.3.  Self-expression matrix learning module

Before entering the decoder, 𝐻 (𝑉 ) will pass through the self-
expression layer which is a fully connected layer devoid of activation 
functions and biases. The objective of this layer is to construct a linear 
combination expressed by other nodes. 𝐶 ∈ ℝ𝑛×𝑛 is a self-expression co-
efficient matrix and a trainable weighted parameter of self-expression 
layer, 𝐶𝑖𝑗 measures the affinity between the 𝑖th node and the 𝑗th node. 
The self-expression layer is equipped for all graph auto-encoders. To 
optimize 𝐶 (𝑣), the self-expression loss is calculated as:

𝐿𝑠𝑒 =
1
2

2𝑉
∑

𝑣=1
||𝐻 (𝑣) −𝐻 (𝑣)𝐶 (𝑣)

||

2
𝐹 + 𝜇||𝐶 (𝑣)

||𝑝 (8)

where 𝐶 (𝑉 +1) = 𝐶𝑢
(1), …, 𝐶 (2𝑉 ) = 𝐶𝑢

(𝑉 ). 𝜇 is always set to 10. 𝐶 (𝑣) and 
𝐶𝑢

(𝑣) are self-expression coefficient matrices generated by view-specific 
auto-encoders and shared auto-encoder. To prevent the trivial solution 
𝐶 (𝑣) = 𝐼 , we impose the constraint 𝐶 (𝑣)

𝑖𝑖 = 0. Additionally, ||𝐶 (𝑣)
||𝑝 serves 

as a sparsity penalty term, with 𝑝 being set to 1.

3.3.1.  Improved contrastive learning
While contrastive learning was initially developed for augmented 

views of single-modality data, recent advances have extended its prin-
ciples to multi-view scenarios. Its goal is to learn representations across 
heterogeneous but semantically aligned views. In such frameworks, con-
trastive objectives are used to maximize mutual information between 
different views of the same instance, even when the views are not gen-
erated via augmentation. Our work builds upon this generalized view 
of contrastive learning, treating each graph view as a distinct modal-
ity of the same underlying structure. In traditional contrastive learning, 
positive pairs are constructed via data augmentation. In our multi-view 
setting, positive pairs are formed by linking different views of the same 
node. Although these views are not augmented copies, they share a com-
mon semantic identity-the node itself. Under the assumption that all 
views describe the same set of nodes, maximizing agreement between 
cross-view representations of the same node is equivalent to maximizing 
the mutual information across views.

Each row of the self-expression coefficient matrices represents a 
low-dimensional subspace representation of a node, encapsulating its 
affinities with other nodes. Despite being in different views, this innate
semantic consistency is a huge advantage partnered with a shared auto-
encoder to reduce heterogeneous gap. According to traditional con-
trastive learning, as shown in Fig. 2(a), the subspace representation of 
a node 𝑖 serves as the anchor, while those of node 𝑖 in other views are 
treated as positive samples, and the subspace representations of other 
nodes across views are considered negative samples. There are 𝑣 − 1 pos-
itive pairs and 𝑣(𝑛 − 1) negative pairs with the anchor. The objective is 
to minimize the distance between positive pairs and maximize the dis-
tance between negative pairs in the latent space. In general, nodes of 
the same class are expected to have similar linear combinations. This 
approach is not suitable when nodes of the same class as node 𝑖 are 
mistakenly considered as negative samples and pushed away. Differ-
ently, for self-consistent contrastive learning (Xia et al., 2022), nodes 
with the same pseudo label as node 𝑖 are also considered to be positive 
samples (Fig. 2(b)). However, due to the linear assumption of DSC, this 
inference is not necessarily valid for self-expression coefficient matri-
ces, which prohibits nodes from self-representation. With the sparsity 
of graph-structured datasets, nodes belonging to the same class may ex-
hibit dissimilar subspace representations. It is not appropriate to bring 
them closer. Self-consistent methods treats all same-label nodes as pos-
itives may force structurally inconsistent representations to align, vio-
lating the sparsity and self-expressiveness assumptions of DSC.

Therefore, as shown in Fig. 2(c), we propose a new contrastive learn-
ing strategy for DSC. Our strategy treats cross-view representations of 
the same node as positive pairs, while treating same-label but different-
node representations as false negatives, allowing them to evolve nat-
urally during training. This design avoids over-constraining the opti-
mization and respects the inherent sparsity of subspace representations. 
Specifically, in the framework of a shared auto-encoder mapping a self-
expression coefficient matrix across multiple views, nodes with the same 
index as node 𝑖 are considered positive samples, those with the same 
pseudo label as node 𝑖 are regarded as false negative samples, and the 
rest are treated as negative samples. These categories form positive, false 
negative and negative pairs with node 𝑖, with the objective of bringing 
positive pairs closer and distancing negative pairs, while do nothing 
with false negative pairs and let them update themselves during the 
learning process.

Here, spectral clustering provides pseudo labels to filtering out false 
negatives. Accordingly, similar to Xiao et al. (2023), we adopt a two-
stage pre-training process. Initially, view-specific auto-encoders are pre-
trained, followed by the shared auto-encoder. During formal training, 
these two types of auto-encoders employ distinct learning rates for 
back propagation, facilitating the preservation of clustering accuracy. 
As pseudo labels in two successive epochs might not be consistent, up-
dating too quickly might lead to unstable model optimization. We take 
an interval 𝑇  to update the pseudo labels, the value of 𝑇  ranges from {5, 
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Fig. 2. Three types of contrastive learning. (a) traditional contrastive learning (b) self-consistent contrastive learning (c) the proposed self-expression contrastive 
learning. The red arrow means pushing away, the green arrow means pulling closer and the black arrow means neither pushing away nor pulling closer.

10, 15, 20}. We take two views as an example, the contrastive learning 
loss is calculated as:

𝑓 (𝐶𝑖, 𝐶𝑗 ) = 𝑒𝑠𝑖𝑚(𝐶
(𝛼)
𝑖 ,𝐶(𝛼)

𝑗 )∕𝜏 + 𝑒𝑠𝑖𝑚(𝐶
(𝛼)
𝑖 ,𝐶(𝛽)

𝑗 )∕𝜏 (9)

𝐿𝑐𝑜𝑛 = − 1
2𝑛

1
∑

𝛼=0
𝛽=1−𝛼

𝑛
∑

𝑖=1
𝑙𝑜𝑔 𝑒𝑠𝑖𝑚(𝐶

(𝛼)
𝑖 ,𝐶(𝛽)

𝑖 )∕𝜏

𝑒𝑠𝑖𝑚(𝐶
(𝛼)
𝑖 ,𝐶(𝛽)

𝑖 )∕𝜏 +
∑

𝑗∈▿𝑖
𝑓 (𝐶𝑖, 𝐶𝑗 )

(10)

where 𝐶𝑖 represent the 𝑖th row of the self-expression coefficient matrix, 
▿𝑖 is the set of nodes that have different pseudo labels as 𝑖, 𝜏 denotes a 
temperature parameter, we set 𝜏 = 1, 𝛼 and 𝛽 represents different views, 
𝑠𝑖𝑚(𝐶𝑖, 𝐶𝑗 ) = 𝐶𝑇

𝑖 𝐶𝑗∕||𝐶𝑖||||𝐶𝑗 ||.
Finally, we combine the self-expression coefficient matrices by a set 

of weight coefficients for complementarity:
𝐶𝑓𝑖𝑛𝑎𝑙 =

∑𝑉
𝑣=1 𝛽

(𝑣)
𝑤 𝐶 (𝑣)

𝑢 𝑠.𝑡.
∑𝑉

𝑣=1 𝛽
(𝑣)
𝑤 = 1, 𝛽(𝑣)𝑤 ≥ 0.

Then the affinity matrix △ can be calculated by △ = 1
2 (|𝐶𝑓𝑖𝑛𝑎𝑙| +

|𝐶𝑇
𝑓𝑖𝑛𝑎𝑙|). Subsequently, spectral clustering can be applied to this matrix 

to derive the clustering results.

3.3.2.  Multi-scale information consistency
Since the self-expression coefficient matrices derived from differ-

ent layers represent distinct levels of feature representation, therefore 
a multi-scale consistency is introduced to address the critical problem: 
the potential inconsistency between the local structural information cap-
tured by shallow layers and the global semantic information captured by 
deep layers. By regularizing the alignment of these matrices, the model 
is forced to reconcile these two levels of information. This ensures that 
the learned representation is not only semantically meaningful but also 
structurally sound, which is crucial for a more stable and accurate final 
clustering result. To minimize the difference between self-expression co-
efficient matrices, the self-expression consistency loss 𝐿𝑠𝑐 is calculated 
as:

𝐿𝑠𝑐 =
𝑉
∑

𝑣=1
||𝐶𝑓𝑖𝑛𝑎𝑙 − 𝐶 (𝑣)

||

2
𝐹 (11)

Besides, 𝐿𝑠𝑐 serves as a coordination mechanism for integrating 
multi-scale information within the model. It encompasses not only the 
final layer of the shared encoder but also the intermediate layers of 
view-specific encoders throughout the model’s data flow. Specifically, 
the coefficients 𝐶 (𝑣) and 𝐶 (𝑣)

𝑢  are from distinct graph convolution lay-
ers. Shallow graph convolutions facilitate nodes in prioritizing neigh-
boring nodes, whereas deep graph convolutions allow nodes to incorpo-
rate information from a broader spectrum of nodes. Through Eq. (11)], 
the self-expression coefficient matrices corresponding to shallow and 

deep topologies mutually complement each other. Consequently, the en-
coders are optimized towards achieving a refined self-expression coeffi-
cient matrix.

3.4.  Overall loss function

To facilitate the end-to-end training, the total loss function of 
MvCDSC is formulated as:
𝐿 = min

𝑊 ,𝑣𝑠𝑟 ,𝐶
𝐿𝑟𝑒 + 𝐿𝑠𝑒 + 𝜆1𝐿𝑐𝑜𝑛 + 𝜆2𝐿𝑠𝑐 (12)

where 𝑊 = {𝑊 (1),𝑊 (2),… ,𝑊 (𝐿)} and 𝑣𝑠𝑟 = {𝑣(1)𝑠 , 𝑣(1)𝑟 ,… , 𝑣(𝐿)𝑠 , 𝑣(𝐿)𝑟 } are 
training parameters of graph auto-encoder, 𝐶 represents self-expression 
coefficient matrices, including those of the shared graph auto-encoder 
and the graph auto-encoder of each view. 𝜆1 and 𝜆2 are trade-off param-
eters. These modules are jointly trained in an end-to-end manner using 
the Adam algorithm (Kingma & Ba, 2014) with gradient clipping. The 
general procedure of MvCDSC are summarized in Algorithm 1.

4.  Experiment

Having defined the architecture, the multi-scale consistency objec-
tive, and the contrastive loss function, this section will test the hypoth-
esis that the fusion of multi-scale coefficient alignment and structure-
guided contrastive learning improves clustering performance compared 
to state-of-the-art methods, particularly on complex attributed graph 
datasets.

4.1.  Experiment setting

(1) Benchmark Dataset: We first evaluate the performance of 
our clustering approach on two types of graph-structured multi-view 
datasets, including multi-attribute and multi-layer datasets. For multi-
attribute datasets, we choose three real-world datasets from diverse 
domains, including Cora, Citeseer, and Wiki (Yang et al., 2015). Cora 
and Citeseer represent citation networks, where nodes and edges sig-
nify publications and citations, respectively. The node attributes are 
presented as bag-of-words of keywords. Wiki represents a webpage net-
work, where nodes and edges denote webpages and hyperlinks, respec-
tively, and node attributes are described by TF-IDF weighted vectors. For 
the datasets initially containing only one attribute, we construct a sec-
ond attribute through the Cartesian product of 𝑋 ×𝑋𝑇 , where the orig-
inal attribute and the transformed attribute share the same adjacency 
matrix. For multi-layer datasets, we choose two widely used datasets: 
ACM and IMDB (Sun et al., 2022), both with one attribute. ACM de-
lineates a paper network with two types of relationships: co-paper and 
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Algorithm 1 The general procedure of MvCDSC.
Input: Node attribute matrices 𝑋(1),… , 𝑋(𝑉 ), adjacency matri-
ces 𝐴(1),… , 𝐴(𝑉 ), hyper-parameters 𝜆1, 𝜆2, pre-training learn-
ing rate, formal training learning rate, maximum number 
of iterations 𝑇𝑝𝑟𝑒1, 𝑇𝑝𝑟𝑒2, 𝑇𝑓𝑜𝑟𝑚𝑎𝑙, the dimension of graph auto-
encoder, interval 𝑇 , cluster number 𝑘, view number 𝑉 .
Output: Clustering results
1: Initialize training parameters
2: for 𝑖 = 1 : 𝑉  do:
3: for 𝑗 = 1 ∶ 𝑇𝑝𝑟𝑒1 do ∶
4:  //pre-training view-specific graph auto-encoders
5:  Update 𝑊 , 𝑣𝑠𝑟, 𝐶 of view-𝑖 graph auto-encoder

 using Adam
6:  end for
7: end for
8: for 𝑖 = 1 : 𝑇𝑝𝑟𝑒2 do:
9:  //pre-training shared graph auto-encoders
10:  Update 𝑊 , 𝑣𝑠𝑟, 𝐶 of shared graph auto-encoder using

 Adam
11: end for
12: for 𝑖 = 1 : 𝑇𝑓𝑜𝑟𝑚𝑎𝑙 do:
13:  Compute 𝐻 (1), …, 𝐻 (𝑉 ), 𝐶 (1), …, 𝐶 (𝑉 ) by solving

 Eq. (1), (2), (3), (7), (8)
14:  Compute 𝐹 (1), …, 𝐹 (𝑉 ), 𝐶 (1)

𝑢 , …, 𝐶 (𝑉 )
𝑢 , 𝐶𝑓𝑖𝑛𝑎𝑙

15:  Update 𝑊 , 𝑣𝑠𝑟, 𝐶 by minimizing Eq.  (12) using Adam
16:  Run spectral clustering on △ = 1

2
(|𝐶𝑓𝑖𝑛𝑎𝑙| + |𝐶𝑇

𝑓𝑖𝑛𝑎𝑙|)
 to get the clustering results

17:  if 𝑖 % 𝑇  == 0:
18:  Update the pseudo labels used in Eq. (10)
19: end for
20: return clustering results

co-subject, and node attributes are represented as bag-of-words of key-
words. IMDB represents a movie network comprising co-actor and co-
director relationships, with node attributes described as bag-of-words of 
plots. To further validate the effectiveness of our MvCDSC on non-graph-
structured and large-scale datasets, we assess its performance on three 
additional datasets, including Caltech101, Yale, and HHAR. Specifically, 
Caltech101 is an image dataset comprising 101 object categories and 
one background category. For this dataset, we extract six features and 
select 1984-dimensional and 512-dimensional features of all images us-
ing HOG and GIST as different views. The Yale dataset, also an image 
dataset, includes 165 grayscale photographs of 15 different individu-
als, each with 11 face images. We extract 4096-dimensional and 3304-
dimensional features and construct a graph structure using K-nearest 
neighbors. The HHAR dataset contains 10,299 recordings from smart 
phones and smart watches, categorized into six human activities. For 
HHAR, we employ Euler transformation and K-nearest neighbors to con-
struct a second view. Detailed information and statistical summaries of 
these datasets are provided in Table 1.

(2) Baseline Models: We compare the clustering performance of our 
proposed model with state-of-the-art clustering methods, including the 
following single-view and multi-view methods.

Single-view methods: K-means is a basis clustering algorithm to get 𝑘
clusters through repeated interaction. LINE (Tang et al., 2015) is a classi-
cal graph embedding method which preserves first-order proximity and 
second-order proximity between nodes. GAE and VGAE (Kipf & Welling, 
2016) combine graph convolution with auto-encoder and variational 
auto-encoder to learn node representation. MGAE (Wang et al., 2017) 
proposes a marginalization process on the node content and paired with 
a denoising graph auto-encoder to boost the interplay between graph 

structure and node content. GATE (Salehi & Davulcu, 2019) utilizes self-
attention to measure the relevance between node and its neighbors, then 
aggregate node representation accordingly. DAEGC (Wang et al., 2019a) 
proposes a neighbor-aware end-to-end framework which integrates em-
bedding learning and node clustering. SDCN (Bo et al., 2020) constructs 
a KNN graph and introduces structural information into deep clustering 
by combining the representation of auto-encoder and graph convolu-
tional network. MSGA (Wang et al., 2021a) designs a multi-scale self-
expression module to obtain a discriminative coefficient representation 
from each layer of the encoder. CAGC (Wang et al., 2017) put forward 
the region-level contrast and implements the instance-level contrastive 
learning on the node representation before and after the self-expression 
layer.

Multi-view methods: RMSC (Xia et al., 2014) is a multi-view spectral 
clustering method based on the Markov chain. PwMC (Nie et al., 2017) is 
a graph-based multi-view clustering method which employs weights to 
each view, and SwMC is its self-conducted weight version. PMNE (Liu 
et al., 2017) processes multilayer networks through network aggrega-
tion. GMC (Wang et al., 2019b) imposes a rank constraint on the unified 
graph matrix. MCGC (Pan & Kang, 2021) filter out the undesirable high-
frequency noise via graph filtering and learn a consensus graph regular-
ized by graph contrastive loss. O2MAC (Fan et al., 2020) selects the most 
informative view from multiple views by a heuristic metric modularity 
to take part in the reconstruction and clustering. MvAGC (Lin & Kang, 
2021) integrates graph filter and high-order relations of graph struc-
tures in the graph-based multi-view clustering. CMGEC (Wang et al., 
2021b) takes a simultaneous fusion of node representations and adja-
cency matrices and maintains the similarity of neighboring characteris-
tics of each view in the latent space, the same is true for DFP-GNN (Xiao 
et al., 2023). MAGCN (Cheng et al., 2021) is designed with two-pathway 
encoders that map node embeddings and learn view-consistency infor-
mation. MGCCN (Liu et al., 2022) introduces a generic and effective 
contrastive learning based GCN framework which uses pre-defined com-
bination coefficients to aggregate the heterogeneous multi-view/multi-
layer information. DMVGC (Liu et al., 2024) employs attention mecha-
nisms in the decoders of different views and incorporates a collabora-
tive self-training objective to align clustering outcomes. DuaLGR (Ling 
et al., 2023) enhances each view’s graph using pseudo labels to mitigate 
the impact of non-homophilous edges and to extract high-level view-
common information. DMCE (Zhao et al., 2023b) utilizes graph recon-
struction and graph contrastive learning to integrate similarity graphs 
from different views. DGR (Zhao et al., 2023a) introduces a deep graph-
based MVC method using residual GCN and orthogonal loss. MFCGC 
(Yang et al., 2024) devises a fair augmentation strategy for attributed 
graphs to guide representation learning, and also proposes a reliable 
pseudo-label selection method to enhance contrastive learning.

(3) Evaluation metrics: we evaluate the clustering performance us-
ing four widely used metrics: Accuracy (ACC), Normalized Mutual In-
formation (NMI), Adjusted Rand Index (ARI). The higher values of these 
metrics mean better clustering quality.

(4) Parameter settings: For all baseline models, parameters are set ac-
cording to the literatures to achieve optimal performance. In our model, 
the dimensions of each layer of the auto-encoder are explored within the 
range of {4096, 2048, 1024, 512, 256, 128, 64, 32} and keep consis-
tent throughout pre-training and formal training. To achieve a balanced 
loss function and obtain optimal results, trade-off parameters 𝜆1, 𝜆2 are 
adjusted within the range of 10−3 to 103. Detailed parameter configura-
tions are listed in Table 2. Here, (𝑑1, 𝑑2) and (𝑑3, 𝑑4) refer to the dimen-
sions of view-specific encoders and shared encoder respectively, while 
𝑙𝑟1 and 𝑙𝑟2 represent their learning rates. Since each view-specific graph 
autoencoder is initially pre-trained individually, setting a small learn-
ing rate 𝑙𝑟1 helps preserve the uniqueness of each view. The parameter 
T is set to 10, except for Wiki, Caltech101 and HHAR, where it is set
to 20.
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Table 1 
Statistics of the datasets.
 Datasets  Dataset Types  Feature Types  Nodes  Edges  Attributes  Classes

 Cora  graph-structure (multi-attribute)
Bag of words of keywords,
Cartesian transform  2708  5429

1433,
2708  7

 Citeseer  graph-structure (multi-attribute)
Bag of words of keywords,
Cartesian transform  3327  4732

3703,
3327  6

 Wiki  graph-structure (multi-attribute)
TF-IDF,
Cartesian transform  2405  17,981

4973,
2405  17

 ACM  graph-structure (multi-layer)  Bag of words of keywords  3025
29281,
2210761  1830  3

 IMDB  graph-structure (multi-layer)  Bag of words of keywords  4780
98010,
21018  1232  3

 Caltech101  non-graph-structure (image)

Gabor,
Wavelet Moments,
CENHIST,
HOG, GIST, LBP  9144  –

48, 40, 254,
1984, 512, 928  102

 Yale  non-graph-structure (image)

intensity,
LBP,
Gabor  165

top-5 and top-2
nearest neighbors

3304,
4096,
6750  15

 HHAR  non-graph-structure (record)
Sensor records,
Euler transform  10,299

top-5
nearest neighbors

561,
561  6

Table 2 
The parameter settings of MvCDSC in the formal training.
 Dataset  (𝑑1,𝑑2)  (𝑑3,𝑑4) 𝑙𝑟1 𝑙𝑟2 𝜆1 𝜆2 𝛽𝑤

 Cora [512,512],[1024,512]  [512,512]  0.00002  0.0002  1.0  0.003  (0.7,0.3)
 Citeseer [1024,512],[1024,512]  [512]  0.00002  0.0002  5.0  0.1  (0.7,0.3)
 Wiki [4096,512],[1024,512]  [512]  0.00002  0.0003  200  1.5  (0.7,0.3)
 ACM [4096,512],[1024,512]  [128]  0.00002  0.0002  5.0  10  (0.7,0.3)
 IMDB [4096,512],[1024,512]  [256,128]  0.00002  0.0001  1.0  0.001  (0.0,1.0)
 Caltech101 [512,512],[512,512]  [512]  0.0005  0.005  10  0.5  (0.7,0.3)
 Yale [2048,512],[2048,512]  [512]  0.0001  0.0002  10  0.1  (0.7,0.3)
 HHAR [512,512],[512,512]  [256]  0.00005  0.0001  100  0.01  (0.7,0.3)

Table 3 
The clustering results on multi-attribute datasets.

Methods Input
 Cora  Citeseer  Wiki
 ACC  NMI  ARI  ACC  NMI  ARI  ACC  NMI  ARI

 K-means  best𝑋  0.500  0.317  0.239  0.544  0.312  0.285  0.417  0.440  0.150
VGAE
GATE
MGAE
DAEGC
SDCN
MSGA
CAGC

𝐴&best𝑋
𝐴&best𝑋
𝐴&best𝑋
𝐴&best𝑋
𝐴&best𝑋
𝐴&best𝑋
𝐴&best𝑋

0.592
0.658
0.684
0.704
0.712
0.747
0.764

0.408
0.527
0.511
0.528
0.535
0.578
0.603

0.347
0.451
0.448
0.496
0.506
0.519
0.552

0.392
0.616
0.661
0.672
0.659
0.698
0.707

0.163
0.401
0.412
0.397
0.387
0.433
0.438

0.101
0.381
0.414
0.410
0.401
0.415
0.463

0.450
0.465
0.514
0.478
0.385
0.522
0.530

0.167
0.428
0.485
0.449
0.375
0.481
0.485

0.263
0.316
0.350
0.324
0.285
0.323
0.336

CMGEC
MAGCN
MGCCN
DMVGC
MFCGC

𝐴&𝑋(1)&𝑋(2)

𝐴&𝑋(1)&𝑋(2)

𝐴&𝑋(1)&𝑋(2)

𝐴(1)&𝐴(2)&𝑋
𝐴&𝑋(1)&𝑋(2)

0.707
0.751
0.761
0.693
0.744

0.485
0.598
0.602
0.536
0.561

0.417
0.532
0.558
0.470
0.531

0.677
0.698
0.703
0.691
0.704

0.367
0.418
0.441
0.438
0.447

0.407
0.423
0.451
0.457
0.466

–
0.483
0.535
–
0.544

–
0.427
0.454
–
0.481

–
0.216
0.326
–
0.363

MvCDSC 𝐴&𝑋(1)&𝑋(2) 0.768 0.604 0.573 0.713 0.441 0.467 0.549 0.487 0.369

4.2.  Performance comparison

To estimate the clustering performance of our proposed MvCDSC, 
we run the aforementioned baseline models ten times and report the 
average score to avoid the randomness. For part of baseline models, we 
quote the clustering performance on four metrics from previous studies 
and mark it as ’-’ if not exists. The results are shown in Tables 3–6, where 
the bold values indicate the best performance. For single-view methods, 
we perform the methods on each view respectively and report the best 
results.

From the experimental results, we have the following observations:

• In most cases, the clustering methods that use both node feature and 
adjacency matrix tend to achieve better performance than those us-
ing only one of them. This underscores the significance of node fea-
tures and adjacency graphs in clustering. Moreover, multi-view ap-
proaches usually outperform single-view methods due to their ability 
to leverage richer information.

• Compared with traditional shallow models, deep neural net-
work based methods usually achieve better performance, ow-
ing to their capacity in extracting more useful information from 
node feature and adjacency matrix and combining them more
efficiently.
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Table 4 
The clustering results on multi-layer datasets.

Methods Input
 ACM  IMDB
 ACC  NMI  ARI  ACC  NMI  ARI

LINE-avg
PMNE
RMSC
PwMC
SwMC

𝐴(1)&𝐴(2)

𝐴(1)&𝐴(2)

𝐴(1)&𝐴(2)

𝐴(1)&𝐴(2)

𝐴(1)&𝐴(2)

0.6479
0.6936
0.6315
0.4162
0.3831

0.3941
0.4648
0.3973
0.0332
0.0838

0.3432
0.4302
0.3312
0.0395
0.0187

0.4719
0.4958
0.2702
0.2453
0.2671

0.0063
0.0359
0.0054
0.0023
0.0056

-0.0090
0.0366
0.0018
0.0017
0.0004

GAE-avg
DAEGC
CAGC

𝑋&best𝐴
𝑋&best𝐴
𝑋&best𝐴

0.6990
0.8909
0.917

0.4771
0.6430
0.711

0.4378
0.7046
0.769

0.4442
0.3683
–

0.0413
0.0055
–

0.0491
0.0039
–

O2MAC
MvAGC
CMGEC
MGCCN
DuaLGR
MFCGC

𝑋&𝐴(1)&𝐴(2)

𝑋&𝐴(1)&𝐴(2)

𝑋&𝐴(1)&𝐴(2)

𝑋&𝐴(1)&𝐴(2)

𝑋&𝐴(1)&𝐴(2)

𝑋&𝐴(1)&𝐴(2)

0.9042
0.8975
0.9089
0.9167
0.9270
0.9276

0.6923
0.6735
0.6912
0.7095
0.7320
0.7403

0.7394
0.7212
0.7232
0.7688
0.7940
0.7983

0.4502
0.5633
0.4844
0.5490
0.5421
0.5429

0.0421
0.0371
0.0514
0.0567
0.0600
0.0893

0.0564
0.0940
0.0469
0.1071
0.1348
0.1093

MvCDSC 𝑋&𝐴(1)&𝐴(2) 0.9210 0.7333 0.7800 0.5936 0.0687 0.1336

Table 5 
The clustering results on image datasets.

Methods
 Caltech101  Yale
 ACC  NMI  ARI  ACC  NMI  ARI

K-means
GMC
O2MAC
MCGC
CMGEC
DFP-GNN
DMCE
DGR

0.1370
0.1950
0.1168
0.2430
0.1898
0.2025
0.2718
0.2717

0.3040
0.2379
0.3089
0.3907
0.4126
0.4153
0.4682
0.4719

0.0835
0.0042
0.0275
0.1249
0.1807
0.3367
0.3246
0.3208

0.6097
0.6182
0.4945
0.7454
0.4667
0.3313
0.7261
0.7667

0.6610
0.6735
0.5718
0.7494
0.5413
0.3910
0.7336
0.7530

0.4220
0.4336
0.3336
0.4735
0.2191
0.2569
0.5243
0.5295

MvCDSC 0.3109 0.4528 0.4221 0.7694 0.7569 0.5349

Table 6 
The clustering results on large datasets.

Methods
 HHAR
 ACC  NMI  ARI

K-means
O2MAC
MAGCN
MGCCN
MFCGC

0.5736
0.7219
0.6695
0.7402
0.7606

0.6009
0.6336
0.7002
0.7094
0.7012

0.4639
0.5470
0.5783
0.5871
0.6152

MvCDSC 0.8014 0.7472 0.6617

• The proposed MvCDSC consistently outperforms most baseline meth-
ods across four evaluation metrics. On the Cora dataset, MvCDSC 
demonstrates improvements over the suboptimal method, CAGC, 
with increases of 0.4% in ACC, 0.1% in NMI, and 2.1% in ARI. 
On the IMDB dataset, compared to the second-best method MFCGC, 
MvCDSC shows enhancements of 5.07% in ACC, 4.74% in F1, and 
2.43% in ARI. On the Caltech101 dataset, MvCDSC outperforms the 
strongest baseline DMCE, with improvements of 3.91% in ACC and 
a remarkable 9.75% in ARI.

• MvCDSC also performs well on non-graph-structured datasets, de-
spite not being specifically designed for them. This robustness can be 
attributed to the power loss function and architecture, which main-
tain performance even when the autoencoder is replaced by MLP. 
This indicates that MvCDSC is versatile and applicable beyond graph-
structured datasets.

• While the quality of pseudo-labels is important for the improved 
contrastive learning, MvCDSC effectively mitigates the impact of 
poor-quality pseudo-labels through the pre-training phase combined 
with well-designed model architecture and proper learning rate. 
This combination helps generate high-quality pseudo-labels. No-
tably, even on challenging datasets like Caltech101, where obtain-

ing high-quality pseudo-labels is difficult, MvCDSC achieves better 
results. These results indicate the robustness of our improved con-
trastive learning strategy.

4.3.  Ablation study

To validate the efficacy of various components in our model (12), 
we conduct an ablation study on the Cora, Citeseer, and IMDB datasets. 
The loss functions 𝐿𝑟𝑒, 𝐿𝑠𝑒, 𝐿𝑐𝑜𝑛 and 𝐿𝑠𝑐 correspond to each functional 
module as previously described. All ablation experiments are conducted 
within the framework of pre-trained graph auto-encoders. Spectral clus-
tering remains employed for 𝐶𝑓𝑖𝑛𝑎𝑙.

We compare four different training strategies for MvCDSC:

• Using only reconstruction loss and self-expression loss.
• Using reconstruction loss, self-expression loss and contrastive learn-
ing.

• Using reconstruction loss, self-expression loss and multi-scale consis-
tency.

• The total loss function.

Table 7 illustrates the role of each functional module in enhanc-
ing the clustering performance of MvCDSC. Particularly, the two-stage 
pre-training and contrastive learning loss significantly contribute to 
this improvement. indicating 𝐿𝑐𝑜𝑛 provides supplementary information 
for 𝐶𝑓𝑖𝑛𝑎𝑙. When 𝐿𝑠𝑐 term is removed, the clustering performance of 
MvCDSC decreases across all datasets. The results demonstrate that the 
multi-scale consistency may serve as a vital coordination mechanism 
to integrate multi-scale information within the model. On the IMDB 
dataset, with fusion weight coefficients [0,1], MvCDSC appears to de-
generate into single-view clustering. However, the loss functions ensures 
its essence as a multi-view clustering model. Removal of 𝐿𝑐𝑜𝑛 and 𝐿𝑠𝑐
compromises its performance, indicating the importance of adjusting 
and interacting self-expression coefficient matrices across views.

4.4.  Parameter analysis

We examine the sensitivity of various parameters, including trade-
off parameters (𝜆1 and 𝜆2), dimensions and layers of the shared graph 
auto-encoder, and fusion weight coefficients of self-expression coeffi-
cient matrices. Additionally, we compare the proposed enhanced con-
trastive learning with previous contrastive learning strategies.

(1) The effect of trade-off parameters: We first analyze the influence 
of trade-off parameters. Take the Cora dataset as an example, we tune 
the tested parameter from 10−3 to 103 and fix other parameters with the 
values in Table 2.
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Table 7 
Ablation study.

 Cora  Citeseer  IMDB
𝐿𝑟𝑒 + 𝐿𝑠𝑒 𝐿𝑐𝑜𝑛 𝐿𝑠𝑐  ACC  NMI  ARI  ACC  NMI  ARI  ACC  NMI  ARI
✓

✓

✓

✓

✓

✓

✓

✓

0.744
0.763
0.757
0.768

0.569
0.594
0.580
0.604

0.547
0.567
0.557
0.573

0.688
0.708
0.703
0.713

0.427
0.434
0.428
0.441

0.439
0.460
0.453
0.467

0.5443
0.5863
0.5790
0.5936

0.0602
0.0633
0.0702
0.0687

0.0894
0.1238
0.1246
0.1336

Table 8 
Comparison between different versions of contrastive learning on Cora and IMDB datasets.

Different versions of contrastive learning  Cora  IMDB
 ACC  NMI  ARI  ACC  NMI  ARI

traditional contrastive learning
self-consistent contrastive learning
our improved contrastive learning

0.759
0.761
0.768

0.584
0.584
0.604

0.562
0.565
0.573

0.5857
0.5765
0.5936

0.0619
0.0632
0.0687

0.1221
0.1204
0.1336

Fig. 3. The clustering performance (ACC, NMI and ARI) of individual trade-off parameter on Cora dataset.

Fig. 4. The clustering performance (ACC, NMI and ARI) of 𝜆1 and 𝜆2 on Cora dataset.

Table 9 
Computation time of several 
methods (seconds) on Cora 
and HHAR dataset.
 Methods  Cora  HHAR
 MAGCN  114.5  350.7
 MGCCN  172.9  886.3
 MFCGC  225.5  1393.0
 SGCMC  300.4  1496.1
 MvCDSC  220.3  1254.9

Fig. 3 shows the influence of individual trade-off parameters on the 
clustering performance. Notably, variations in 𝜆1 lead to minimal fluctu-
ations in clustering metrics, indicating that the contrastive objective acts 
as a stable regularizer without overly dominating the overall training dy-
namics. As 𝜆2 gradually decrease, the clustering performance gradually 
converges to the optimum. When 𝜆2 = 1000, a decline is observed, sug-
gesting that excessive emphasis on consistency may influence the fused 

self-expression coefficient matrix. This represents a failure case that ex-
cessive emphasis on cross-layer consistency overly constrains the view-
specific encoders, suppressing their ability to capture unique, discrimi-
native structural patterns. This leads to representation homogenization 
and degrades clustering quality. 𝜆2 relate to self-expression coefficient 
matrix optimization and information supplementation, which are criti-
cal for improving clustering metrics. The results indicate that contrastive 
learning can provide a reliable guarantee and only needs a small amount 
of information supplementation.

Subsequently, we analyze the combined impact of 𝜆1 and 𝜆2 on the 
Cora dataset. Both parameters ranging from 10−3 to 103. As illustrated 
in Fig. 4, the clustering performance exhibits improvement as 𝜆2 de-
creases from 103 to 10 and continues to rise marginally as 𝜆2 decreases 
to 10−3. Notably, too high or small values of 𝜆1 are unsuitable for clus-
tering. Optimal clustering performance are achieved when 𝜆1 = 1 and 
𝜆2 = 0.001. The results demonstrate that 𝐿𝑐𝑜𝑛 and 𝐿𝑠𝑐 can sufficiently 
explore multi-view consistency across multi-scale information and de-
cision space, achieving good clustering results. This analysis provides 
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Fig. 5. The clustering performance (ACC, NMI and ARI) of weight coefficients on Cora, ACM, IMDB.

Fig. 6. Parameter sensitivity of 𝑑1,𝑑2 on Cora dataset.

practical guidance for avoiding over-regularization in real-world de-
ployment.

(2) The effect of weight coefficients: After obtaining the view-specific 
self-expression coefficient matrices, these matrices are combined using 
a set of weights. The impact of different combinations of weights on 
clustering performance is illustrated in Fig. 5. In this figure, the 𝑥-axis 
represents the weight of view 1, while the 𝑦-axis indicates clustering 
performance. Given that the sum of the weights for the two views is 
1, the weight for the second view can be inferred accordingly. Overall, 
performance slightly degrades at both extremes, as the model effectively 
reduces to a single-view regime, losing the benefit of multi-view com-
plementarity. For multi-attribute datasets, the second attribute is con-
structed via a Cartesian product, which is not the same as the original
attribute. As for quality, the self-expression coefficient matrix corre-
sponding to the original attribute should predominantly contribute to 
the fusion. For multilayer datasets, each view has a distinct adjacency 
graph that represents the different relationships between nodes, which 
influences the proximity of node representations in the embedding 
space. For the ACM dataset, the Paper-Author-Paper (PAP) relationship 
significantly enhances clustering performance compared to the Paper-
Subject-Paper (PSP) relationship. Conversely, for the IMDB dataset, the 
Movie-Director-Movie (MDM) relationship is so influential that it an-
other view is not needed for fusion. Based on the clustering performance 
of MvCDSC with different combinations of weights, we observe that 
MvCDSC exhibits remarkable robustness to weight assignment across 
views, empirically validating the parameter efficiency and operational 
feasibility of the fusion strategy.

Further, we evaluate the performance of MvCDSC with attention-
based weights to compare the effect of different multi-scale fusion 
strategies. As shown in Supplementary Tables 1 and 2, compar-
ative experiments at different learning rate reveal that attention-
weighted fusion does not yield notable performance gains, but 
introduces significant computational overhead. Meanwhile, atten-
tion mechanisms introduce high sensitivity to learning rate tun-
ing, requiring more hyperparameter optimization effort than our
method.

(3) The effect of improved contrastive learning: To verify the ef-
fectiveness of the proposed contrastive learning strategy, we compare 
it with traditional contrastive learning and self-consistent contrastive 
learning. The difference among these types of contrastive learning lies 
in that traditional contrastive learning pushes away node pairs belong-
ing to the same class as negative pairs, while self-consistent contrastive 
learning brings them closer. Our approach is to treat such node pairs as 
false negative pairs, neither pulling them closer nor pushing them away. 
Table 8 demonstrates that traditional strategies of pushing apart and 
pulling together exhibit varying performances across different datasets. 
In contrast, our neutral strategy consistently delivers superior results. 
Besides, it is important to note the impact of pseudo-label quality. Poor-
quality pseudo-labels can cause our improved contrastive learning to 
regress to a form similar to traditional contrastive learning. Pseudo-
labels of excessively high quality do not yield disproportionately large 
performance gains. To address this, we carefully design the model ar-
chitecture, training epochs, and learning rate to ensure a decent quality 
of pseudo-labels at the beginning. Overall, regardless of pseudo-label 
quality, the improved contrastive learning improves the performance.

(4) The effect of dimensions and layers of shared graph auto-encoder:
On different datasets, the dimensions and layers of shared graph auto-
encoder often need to be adjusted. Take the Cora dataset as an exam-
ple, we explore the dimensionality settings for each graph convolutional 
layer within the range of [128, 256, 512, 1024]. The number of graph 
convolutional layers in the shared graph auto-encoder are constrained 
to a maximum of two. As illustrated in Fig. 6, 𝑑1 and 𝑑2 represent 
the dimensions of the first and second layers of the shared graph auto-
encoder, respectively. 𝑑2 = 0 indicates a single-layer configuration. The 
four curves in the figure correspond to scenarios where 𝑑1 is set to 1024, 
512, 256, and 128, with 𝑑2 varying accordingly. The results indicate that 
MvCDSC exhibits reasonable fluctuations in performance as the dimen-
sions vary significantly. However, there is a notable decline in clustering 
performance when the difference in dimensions between the first and 
second layers is substantial. This suggests that more experimentation 
is required to optimize layer dimensions. Furthermore, the experiment 
demonstrates the robustness and rationality of our model structure.
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Fig. 7. The visualization of 𝐶𝑓𝑖𝑛𝑎𝑙 on Citeseer dataset at epoch 0, epoch 149, epoch 205. The visualization of 𝐶𝑓𝑖𝑛𝑎𝑙 on ACM dataset at epoch 0, epoch 13, epoch 35.

Fig. 8. The convergence curves of the total loss and consistency loss, and the clustering performance of MvCDSC on the Cora and Wiki datasets. (a-c) The results on 
Cora. (d-f) The results on Wiki.

4.5.  Computation time

To evaluate the efficiency of the proposed method, we compare 
MvCDSC with four representative methods on both small (Cora) and 
large (HHAR) datasets. Based on the availability of source code and 
runtime environment, we select MAGCN, MGCCN, MFCGC and SGCMC 

for the comparison. The former three methods are representation-based 
deep multi-view clustering methods. In contrast, SGCMC and our pro-
posed MvCDSC is a subspace-based deep multi-view clustering method. 
We measure the computation time until each method reaches its op-
timal solution. From the experimental results (Table 9), we observe 
that on the small dataset, the computation times for each method were
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similar. However, on the large dataset, representation-based DMVC 
methods demonstrated advantages in terms of efficiency. MvCDSC re-
quires additional time for implementing spectral clustering, which in 
turn provides higher metrics and improved stability. Nonetheless, this 
time investment is generally acceptable, as the suboptimal method 
MFCGC, requires a similar amount of time as our model.

Also, we conduct computational complexity analysis for the pro-
posed MvCDSC and other state-of-the-art methods (see the subsection 
“Complexity comparison” in Supplementary analysis). As shown in Sup-
plementary Table 3, while MvCDSC incorporates an additional shared 
graph autoencoder, the overall framework maintains remarkable sim-
plicity and computational efficiency.

4.6.  Visualization of clustering results

To intuitively validate the effective of McCDSC, we implement t-
SNE on the learned 𝐶𝑓𝑖𝑛𝑎𝑙 at three different epochs on Citeseer and 
ACM datasets, where different colors indicates different cluster labels. 
As shown in Fig. 7, as the number of epochs increases, the inter-cluster 
gaps between subspace representations of different clusters widen, while 
similar subspace representations gradually converge. The emergence of 
intra-cluster gaps is unavoidable due to the inherent nature of subspace 
representation construction. These results demonstrate that MvCDSC ef-
fectively meets our clustering needs. The results further indicate that 
MvCDSC effectively leverages multi-view consistency and complemen-
tarity to learn a discriminative self-expression coefficient matrix 𝐶𝑓𝑖𝑛𝑎𝑙, 
improving clustering results.

4.7.  Convergence analysis

To validate the multi-scale consistency mechanism, we performed 
quantitative analyses of both the total loss and consistency loss 𝐿𝑠𝑐
across the Cora and Wiki datasets. As illustrated in Fig. 8(a,c), the to-
tal loss converges after 60 epochs (Cora) and 50 epochs (Wiki) with 
characteristic rapid initial decrease followed by asymptotic stabiliza-
tion. Meanwhile, Lsc exhibits similar convergence dynamics to the total 
loss, confirming its tight coupling with the overall optimization process 
(Fig. 8(b,d)).Further correlational analysis (Fig. 8(c, f)) reveals that clus-
tering metrics (ACC/NMI/ARI) show marked improvement concurrent 
with the convergence of Lsc and total loss despite early-training fluc-
tuations. This empirically verifies that Lsc actively governs latent rep-
resentation learning for clustering, and multi-scale consistency directly 
contributes to final performance.

5.  Conclusion

In this article, we propose MvCDSC, a contrastive deep subspace 
clustering framework for multi-view graph data. MvCDSC utilizes view-
specific graph auto-encoders and a shared graph auto-encoder to cap-
ture the intricacies of each view while exploring shared information 
across views.  Different from prior DSC methods focusing on single-scale 
self-expression or embedding-level contrastive learning, MvCDSC intro-
duces multi-scale consistency directly on self-expression matrices across 
layers, enforcing alignment between shallow and deep self-expression 
matrices. The Shallow layers preserve neighborhood structures while 
the deep layers capture global semantics. To mitigate heterogeneity 
gaps and semantic disparities, we introduce subspace-aware contrastive 
learning operating directly on self-expression coefficients, adopt false-
negative exclusion strategy to mitigate sparse connectivity errors. This 
strategy align semantic affinities rather than raw features, which is more 
aligned with the clustering objective. MvCDSC unifies representation 
learning, subspace modeling, and contrastive alignment in a single end-
to-end framework. This framework balances consistency, complemen-
tarity, and multi-scale representation learning, with potential applica-
tions in recommendation systems, bioinformatics, and social network 

analysis. Extensive experimental results demonstrate that MvCDSC out-
performs state-of-the-art methods in node clustering tasks. Meanwhile, 
MvCDSC exhibits s strong generalization across diverse data types, 
including non-graph datasets like Caltech101 and multilayer graphs 
(ACM/IMDB), underscoring its versatility in handling view heterogene-
ity. For future work, we aim to extend the application of MvCDSC to 
datasets with a greater number of views and to enhance its computa-
tional efficiency.
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